24 1. Simple Examples of Propagation Next, analyze the error in (1.4.6). Reintroduce the subscripts. Then extract the rapidly oscillating factor in (1.4.5) to find exact amplitudes, u±(t, x) = ei(x1∓t)/ A± exact (, t, x) , A± exact (, t, x) := 1 (2π)d/22 ˆ(ζ) eix.ζ e∓it(|e1+ζ|−1)/ dζ . (1.4.7) Proposition 1.4.2. The exact and approximate solutions of u = 0 with Cauchy data (1.4.4) are given by u = ± ei(x1∓t)/ A± exact (, t, x) , u approx = ± ei(x1∓t)/ γ(x ∓ e1t) 2 , as in (1.4.7) and (1.4.6). The error is O( ) on bounded time intervals. Precisely, there is a constant C 0 so that for all s, , t, A± exact (, t, x) − γ(x ∓ e1t) 2 Hs(RN ) ≤ C |t| γ Hs+2(Rd) . Proof. It suﬃces to estimate the error with the plus sign. The definitions yield A+ exact (, t, x) − γ(x−e1t)/2 = C ˆ(ζ) eix.ζ ( e−it(|e1+ζ|−1)/)−e−itζ1 ) dζ . The definition of the Hs(Rd) norm yields (1.4.8) A+ exact (, t, x) − γ(x − e1t)/2 Hs(RN ) = ζ s ˆ(ζ) ( e−it(|e1+ζ|−1)/ − e−itζ1 ) L2(RN ) . Taylor expansion yields for |β| ≤ 1/2, | e1 + β | = 1 + β1 + r(β) , |r(β)| ≤ C |β|2 . Increasing C if needed, the same inequality is true for |β| ≥ 1/2 as well. Applied to β = ζ this yields t ( e1 + ζ − 1 ) / − t ζ1 x1 ≤ C |t||ζ|2 so e−it(|e1+ζ|−1)/ − e−itζ1 ≤ C |t||ζ|2 . Therefore, (1.4.9) ζ s ˆ(ζ) ( e−it(|e1+ζ|−1)/ − e−itζ1 ) L2(Rd) ≤ C |t| ζ s |ζ|2 ˆ(ζ) L2 . Combining (1.4.8) and (1.4.9) yields the estimate of the proposition.

Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 2012 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.