

Contents

Preface xiii

Chapter 1. Lie superalgebra ABC 1

§1.1. Lie superalgebras: Definitions and examples 1
 1.1.1. Basic definitions 2
 1.1.2. The general and special linear Lie superalgebras 4
 1.1.3. The ortho-symplectic Lie superalgebras 6
 1.1.4. The queer Lie superalgebras 8
 1.1.5. The periplectic and exceptional Lie superalgebras 9
 1.1.6. The Cartan series 10
 1.1.7. The classification theorem 12

§1.2. Structures of classical Lie superalgebras 13
 1.2.1. A basic structure theorem 13
 1.2.2. Invariant bilinear forms for \mathfrak{gl} and \mathfrak{osp} 16
 1.2.3. Root system and Weyl group for $\mathfrak{gl}(m|n)$ 16
 1.2.4. Root system and Weyl group for $\mathfrak{osp}(2m|2n+1)$ 17
 1.2.5. Root system and Weyl group for $\mathfrak{osp}(2m|2n)$ 17
 1.2.6. Root system and odd invariant form for $\mathfrak{q}(n)$ 18

§1.3. Non-conjugate positive systems and odd reflections 19
 1.3.1. Positive systems and fundamental systems 19
 1.3.2. Positive and fundamental systems for $\mathfrak{gl}(m|n)$ 21
 1.3.3. Positive and fundamental systems for $\mathfrak{osp}(2m|2n+1)$ 22
 1.3.4. Positive and fundamental systems for $\mathfrak{osp}(2m|2n)$ 23
 1.3.5. Conjugacy classes of fundamental systems 25

§1.4. Odd and real reflections 26
 1.4.1. A fundamental lemma 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.2.</td>
<td>Odd reflections</td>
<td>27</td>
</tr>
<tr>
<td>1.4.3.</td>
<td>Real reflections</td>
<td>28</td>
</tr>
<tr>
<td>1.4.4.</td>
<td>Reflections and fundamental systems</td>
<td>28</td>
</tr>
<tr>
<td>1.4.5.</td>
<td>Examples</td>
<td>30</td>
</tr>
<tr>
<td>§ 1.5</td>
<td>Highest weight theory</td>
<td>31</td>
</tr>
<tr>
<td>1.5.1.</td>
<td>The Poincaré-Birkhoff-Witt (PBW) Theorem</td>
<td>31</td>
</tr>
<tr>
<td>1.5.2.</td>
<td>Representations of solvable Lie superalgebras</td>
<td>32</td>
</tr>
<tr>
<td>1.5.3.</td>
<td>Highest weight theory for basic Lie superalgebras</td>
<td>33</td>
</tr>
<tr>
<td>1.5.4.</td>
<td>Highest weight theory for $q(n)$</td>
<td>35</td>
</tr>
<tr>
<td>§ 1.6</td>
<td>Exercises</td>
<td>37</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Chapter 2. Finite-dimensional modules

§ 2.1	Classification of finite-dimensional simple modules	43	
2.1.1.	Finite-dimensional simple modules of $\mathfrak{gl}(m	n)$	43
2.1.2.	Finite-dimensional simple modules of $\mathfrak{sp}(2m	2n)$	45
2.1.3.	A virtual character formula	45	
2.1.4.	Finite-dimensional simple modules of $\mathfrak{sp}(2m	2n+1)$	47
2.1.5.	Finite-dimensional simple modules of $\mathfrak{sp}(2m	2n)$	50
2.1.6.	Finite-dimensional simple modules of $q(n)$	53	
§ 2.2	Harish-Chandra homomorphism and linkage	55	
2.2.1.	Supersymmetrization	55	
2.2.2.	Central characters	56	
2.2.3.	Harish-Chandra homomorphism for basic Lie superalgebras	57	
2.2.4.	Invariant polynomials for \mathfrak{gl} and \mathfrak{osp}	59	
2.2.5.	Image of Harish-Chandra homomorphism for \mathfrak{gl} and \mathfrak{osp}	62	
2.2.6.	Linkage for \mathfrak{gl} and \mathfrak{osp}	65	
2.2.7.	Typical finite-dimensional irreducible characters	68	
§ 2.3	Harish-Chandra homomorphism and linkage for $q(n)$	69	
2.3.1.	Central characters for $q(n)$	70	
2.3.2.	Harish-Chandra homomorphism for $q(n)$	70	
2.3.3.	Linkage for $q(n)$	74	
2.3.4.	Typical finite-dimensional characters of $q(n)$	76	
§ 2.4	Extremal weights of finite-dimensional simple modules	77	
2.4.1.	Extremal weights for $\mathfrak{gl}(m	n)$	77
2.4.2.	Extremal weights for $\mathfrak{sp}(2m	2n+1)$	80
2.4.3.	Extremal weights for $\mathfrak{sp}(2m	2n)$	82
§ 2.5	Exercises	85	
Notes		89	

Chapter 3. Schur duality

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>
§3.1. Generalities for associative superalgebras 91
 3.1.1. Classification of simple superalgebras 92
 3.1.2. Wedderburn Theorem and Schur’s Lemma 94
 3.1.3. Double centralizer property for superalgebras 95
 3.1.4. Split conjugacy classes in a finite supergroup 96
§3.2. Schur-Sergeev duality of type A 98
 3.2.1. Schur-Sergeev duality, I 98
 3.2.2. Schur-Sergeev duality, II 100
 3.2.3. The character formula 104
 3.2.4. The classical Schur duality 105
 3.2.5. Degree of atypicality of λ^c 106
 3.2.6. Category of polynomial modules 108
§3.3. Representation theory of the algebra \mathcal{H}_n 109
 3.3.1. A double cover 110
 3.3.2. Split conjugacy classes in \tilde{B}_n 111
 3.3.3. A ring structure on R^- 114
 3.3.4. The characteristic map 116
 3.3.5. The basic spin module 118
 3.3.6. The irreducible characters 119
§3.4. Schur-Sergeev duality for $q(n)$ 121
 3.4.1. A double centralizer property 121
 3.4.2. The Sergeev duality 123
 3.4.3. The irreducible character formula 125
§3.5. Exercises 125
Notes 128

Chapter 4. Classical invariant theory 131
§4.1. FFT for the general linear Lie group 131
 4.1.1. General invariant theory 132
 4.1.2. Tensor and multilinear FFT for $GL(V)$ 133
 4.1.3. Formulation of the polynomial FFT for $GL(V)$ 134
 4.1.4. Polarization and restitution 135
§4.2. Polynomial FFT for classical groups 137
 4.2.1. A reduction theorem of Weyl 137
 4.2.2. The symplectic and orthogonal groups 139
 4.2.3. Formulation of the polynomial FFT 140
 4.2.4. From basic to general polynomial FFT 141
 4.2.5. The basic case 142
§4.3. Tensor and supersymmetric FFT for classical groups 145
 4.3.1. Tensor FFT for classical groups 145
 4.3.2. From tensor FFT to supersymmetric FFT 147
Chapter 5. Howe duality

§5.1. Weyl-Clifford algebra and classical Lie superalgebras
5.1.1. Weyl-Clifford algebra
5.1.2. A filtration on Weyl-Clifford algebra
5.1.3. Relation to classical Lie superalgebras
5.1.4. A general duality theorem
5.1.5. A duality for Weyl-Clifford algebras

§5.2. Howe duality for type A and type Q
5.2.1. Howe dual pair $(\text{GL}(k), \text{gl}(m|n))$
5.2.2. $(\text{GL}(k), \text{gl}(m|n))$-Howe duality
5.2.3. Formulas for highest weight vectors
5.2.4. $(\text{q}(m), \text{q}(n))$-Howe duality

§5.3. Howe duality for symplectic and orthogonal groups
5.3.1. Howe dual pair $(\text{Sp}(V), \text{osp}(2m|2n))$
5.3.2. $(\text{Sp}(V), \text{osp}(2m|2n))$-Howe duality
5.3.3. Irreducible modules of $\text{O}(V)$
5.3.4. Howe dual pair $(\text{O}(k), \text{spo}(2m|2n))$
5.3.5. $(\text{O}(V), \text{spo}(2m|2n))$-Howe duality

§5.4. Howe duality for infinite-dimensional Lie algebras
5.4.1. Lie algebras \mathfrak{a}_∞, \mathfrak{c}_∞, and \mathfrak{d}_∞
5.4.2. The fermionic Fock space
5.4.3. $(\text{GL}(\ell), \mathfrak{a}_\infty)$-Howe duality
5.4.4. $(\text{Sp}(k), \mathfrak{c}_\infty)$-Howe duality
5.4.5. $(\text{O}(k), \mathfrak{d}_\infty)$-Howe duality

§5.5. Character formula for Lie superalgebras
5.5.1. Characters for modules of Lie algebras \mathfrak{c}_∞ and \mathfrak{d}_∞
5.5.2. Characters of oscillator $\mathfrak{osp}(2m|2n)$-modules
5.5.3. Characters for oscillator $\mathfrak{spo}(2m|2n)$-modules

§5.6. Exercises

Notes

Chapter 6. Super duality

§6.1. Lie superalgebras of classical types
6.1.1. Head, tail, and master diagrams
6.1.2. The index sets
6.1.3. Infinite-rank Lie superalgebras
6.1.4. The case of $m = 0$
6.1.5. Finite-dimensional Lie superalgebras
6.1.6. Central extensions 213

§6.2. The module categories 214
6.2.1. Category of polynomial modules revisited 215
6.2.2. Parabolic subalgebras and dominant weights 217
6.2.3. The categories \mathcal{O}, \mathcal{O}, and $\tilde{\mathcal{O}}$ 218
6.2.4. The categories \mathcal{O}_n, \mathcal{O}, and $\tilde{\mathcal{O}}_n$ 220
6.2.5. Truncation functors 221

§6.3. The irreducible character formulas 222
6.3.1. Two sequences of Borel subalgebras of $\tilde{\mathfrak{g}}$ 223
6.3.2. Odd reflections and highest weight modules 225
6.3.3. The functors T and \overline{T} 228
6.3.4. Character formulas 231

§6.4. Kostant homology and KLV polynomials 232
6.4.1. Homology and cohomology of Lie superalgebras 232
6.4.2. Kostant \mathfrak{u}^--homology and \mathfrak{u}-cohomology 235
6.4.3. Comparison of Kostant homology groups 236
6.4.4. Kazhdan-Lusztig-Vogan (KLV) polynomials 239
6.4.5. Stability of KLV polynomials 240

§6.5. Super duality as an equivalence of categories 241
6.5.1. Extensions à la Baer-Yoneda 241
6.5.2. Relating extensions in \mathcal{O}, \mathcal{O}, and $\tilde{\mathcal{O}}$ 243
6.5.3. Categories \mathcal{O}^f, \mathcal{O}^f, and $\tilde{\mathcal{O}}^f$ 247
6.5.4. Lifting highest weight modules 247
6.5.5. Super duality and strategy of proof 248
6.5.6. The proof of super duality 250

§6.6. Exercises 255

Notes 258

Appendix A. Symmetric functions 261

§A.1. The ring Λ and Schur functions 261
A.1.1. The ring Λ 261
A.1.2. Schur functions 265
A.1.3. Skew Schur functions 268
A.1.4. The Frobenius characteristic map 270
§A.2. Supersymmetric polynomials 271
A.2.1. The ring of supersymmetric polynomials 271
A.2.2. Super Schur functions 273
§A.3. The ring Γ and Schur Q-functions 275
A.3.1. The ring Γ 275
A.3.2. Schur Q-functions 277
A.3.3. Inner product on Γ 278