Subject Index

a.e. (almost everywhere), 116
absolute value (of a scalar), 322
absolutely summable, 87
addition
 of functions, 326
 of operators, 21
 of vectors, 322
additive
 countably, 111
 finitely, 110
adjoint
 kernel function, 219
 of a Hilbert–Schmidt integral operator, 219
 of a matrix, 219
 of an abstract Hilbert–Schmidt operator, 224
 of the left and right shift, 219
operator, 218
affine hyperplane, 145
affine subspace, 142
almost everywhere, 116
annihilator, 285
antisymmetric, 314
approximate eigenvalue, 232
Axiom of Choice, 313
axioms
 for a partial ordering, 314
 for a vector space, 323
 for an equivalence relation, 312
 for the real numbers, 318
Baire’s theorem, 262, 275
ball
 closed, B[x, r], 56
 open, B(x, r), 38
Banach contraction principle, 94
Banach space adjoint, 285
basis
 algebraic, 324
 Hamel, 140
 orthonormal, countable, 139
 orthonormal, general, 353
Bernstein polynomial, 340
Bessel’s inequality, 8, 138, 157, 353
 for double series, 143
best aproximation, 129
bijective (mapping), 331
Bolzano–Weierstrass property, 319
theorem, 320
bound
 lower, 315
 upper, 315
bounded
 essentially (function), 122
 function, 20
 linear mapping, 21
 operator, 21
 quadratic variation, 53
 subset of a metric space, 52
 subset of a normed space, 23
 variation, 34, 52, 295
bounded inverse theorem, 268
canonical surjection, 327
Cantor function, 299
Carlson–Beurling inequality, 348
Cartesian product (of sets), 330
Cauchy–Schwarz inequality, 15
change of variables, 114
closed
ball, 56
graph, 270
subset, 55
closed graph theorem, 270
closure (of a subset in a metric space), 48
codomain, 330
coercive (sesquilinear form), 220
coercivity constant, 220
column stochastic matrix, 99
compact
metric space, 64, 72
operator, 214
relatively, 75
sequentially, 64
subset of a metric space, 64
compatible operation (with an equivalence relation), 312
complement (set-theoretic), 330
complete metric (space), 80
completeness, 80
of \(\mathcal{B}(\Omega) \), 84
of \(\mathcal{B}(\Omega; E) \), 91
of \(BV([a, b]; E) \), 91
of \(C_b(\Omega) \), 86
of \(c \), 89
of \(C[a, b] \), 85
of \(C^\alpha([a, b]; E) \), 91
of \(c_0 \), 88
of \(\ell^1 \), 89
of \(\ell^2 \), 82
of \(\ell^\infty \), 85
of \(\ell^p \), 91
of \(L^1 \), 120
of \(L^2 \), 122
of \(L^\infty \), 123
of \(\ell^p \), 123
of \(UC_b(\Omega) \), 89
of a discrete metric space, 88
of a quotient space, 92
of each fin.-dim. space, 84
completeness axiom, 319
completion (of a metric space), 81, 333
complex conjugate \(\overline{z} \), 322
complex numbers \(\mathbb{C} \), 321
conditional expectation, 135
diode, 112
conjugate exponent, 29
conjugate transposed matrix, 219
continuity
at a point, 58
of a mapping, 58
of the norm, 61
of vector space operations, 61
continuous
Hölder cont. of order \(\alpha \), 35
linear mapping, 63
Lipschitz, 35
uniformly, 65
convergence
almost everywhere, 116
in mean, 46
in operator norm, 199
in square mean, 46
of a sequence, 39, 40
of a series, 87
pointwise, 44
strong, of operators, 201
uniform, 44
weak, 75
convex, 131
covariance, 176
covolution, 176
convolution operator, 166
convolution product, 165
coordinate vector, 325
coordinatization
countable (orthonormal) basis, 140
finite basis, 9
countable (set), 316
countably additive, 111
counting measure, 240
cover, 110
cutoff function, 152, 153, 155
dangling node, 99
De Morgan’s laws, 331
Dedekind axiom, 319
definite, 18, 38
dense (subset or subspace), 48
density
of \(C[a, b] \) in \(L^p(a, b) \), 125
of \(C^1[a, b] \) in \(H^1(a, b) \), 183
of \(C^1_0[a, b] \) in \(H_0^1(a, b) \), 189
of \(C^1_0[a, b] \) in \(L^p(a, b) \), 154
diagonal argument, 213, 302
diagonal matrix (infinite), 27
diameter (of a subset of a metric space), 52
dimension (of a vector space), 324
Dini’s theorem, 77
Dirac functional, 25
direct sum, 135
algebraic, 326
decomposition, 326
Dirichlet
D.–Dini criterion, 159
kernel, 267
Laplacian, 196
principle, 187, 190, 191
problem, 190, 191
discrete metric, 38
distance
of a point to a set, 47, 129
of vectors in a normed space, 37
dividing by an equivalence relation, 312
domain
of a mapping, 330
of the Dirichlet Laplacian, 247
of the Schrödinger operator, 249
dominated convergence theorem, 118
double sequence, 52
Cauchy, 89
convergent, 52
double series, 91, 156
dual
basis, 328
mapping, 328
space (algebraic), 327
space (topological), 277
duality, 290
canonical, 286
eigenspace, 231
eigenvalue, 231
approximate, 232
eigenvector, 231
element of a set, 329
energy norm, 185
equality (of sets), 329
equality a.e., ∼λ, 116
equivalence
class, 312
of metrics, 76
of norms, 68
relation, 312
Euler’s constant, 10
evaluation functional, 25, 326
evolution equation (for the Schrödinger op.), 252
factor space, 327
family (indexed), 331
Fejér kernel, 167
finite rank, 211
finite-dimensional (vector) space, 324
finitely additive, 110
fixed point equation, 94
form
hermitian, 328
quadratic, 328
sesquilinear, 328
symmetric, 328
Fourier coefficient
abstract, 7
classical, 10, 157, 161
Fourier inversion formula, 174, 347
Fourier series
abstract, 7, 138
classical, 11
Fourier transform, 128, 162
on L², 170
Fredholm alternative, 238
Fubini’s theorem, 194
function
absolutely continuous, 299, 304
adjoint kernel, 219
characteristic, 109
constant 1, 180
cutoff, 152, 153, 155
essentially bounded, 122
even, 142
Hilbert–Schmidt kernel, 197
Hölder continuous, 35
integrable, 113
kernel, 194
Lebesgue measurable, 112, 194
Lipschitz continuous, 35
locally integrable, 174
of bounded variation, 34, 295
of compact support, 152
periodic, 157
potential, 249
regulated, 91, 175, 295
smooth, of compact support, 155
special regulated, 296
square integrable, 121
step, 35, 295
test, 177, 187
uniformly continuous, 89
weakly differentiable, 178
functional
(bounded) linear, 21
linear, 325
point evaluation, 25
sublinear, 279
fundamental principle of analysis, 90
fundamental theorem of calculus for H^1, 182

Gaussian elimination, 93
generalized eigenspace, 231
generator of a subspace, 323
Gram–Schmidt procedure, 9
graph (of a mapping), 330
greatest (element in an ordered set), 315
greatest lower bound, 315
Green’s function, 225
for the Poisson problem, 184
for the Sturm–Liouville problem, 250

Hahn–Banach theorem, 280, 282, 284
Hausdorff’s maximality theorem, 316
heat equation, 252
hermitian form, 328
Hölder continuous, 35
Hölder’s inequality, 30, 123, 124
homogeneous, 18

imaginary part, 321
imaginary part $\text{Im } z$, 321
imaginary unit i, 321
implicit function theorem, 103
importance vector, 98
index set, 331
indexed family, 331
induced metric, 39
infimum, 315
infinite-dimensional (vector space), 324
initial value problem, 95
injective (mapping), 330
inner product, 3
standard, on $C[a,b]$, 3
standard, on \mathbb{K}^d, 3
inner product space, 3
integrable function, 113
integral
equation, 204
kernel, 194
Lebesgue, 108
operator, 194
Riemann, 107
Riemann–Stieltjes, 175
integration by parts (for H^1-functions), 189
integration operator, 119, 179
invariant (subspace), 235
inverse (of a mapping), 331
inverse mapping theorem, 102
invertible operator, 196
isometric
isomorphism, 24, 333
mapping, see also isometry
isometry, 24, 333
linear, in finite dimensions, 9
isomorphic
as vector spaces, 325
isomorphism
algebraic, 325
isometric, 24
topological, 89
iterative procedure, 94

kernel
Hilbert–Schmidt integral, 197
integral, 194
of a linear mapping, $\ker(T)$, 64, 325

Lagrange multiplier, 104
Laplace transform, 127, 198
Laplacian (with Dirichlet b.c.), 196
Lax–Milgram theorem, 146, 220
least (element in an ordered set), 315
least upper bound, 315
Lebesgue
integral, 108
measurable set, 111
measure, 111
outer measure, 110
singular function, see also Cantor function
Legendre polynomials, 12
length
of a vector, 4
of an interval, 108
limit
of a double sequence, 52
of a sequence, 40
linear
mapping, bounded, 21
combination, 323
functional, 325
independence, 323
mapping, 21, 325
Subject Index

space, 323
span, 323
subspace, 323
Lipschitz
condition, 96
continuous, 35
local uniqueness (of solutions), 98
lower bound, 315
mapping
bijective, 331
continuous, 58
continuous at a point, 58
general, 330
injective, 330
inverse, 331
linear, 325
surjective, 330
uniformly continuous, 65
maximal (element in an ordered set), 315
mean value theorem, 101
measurable
function, 112, 194
product, 194
set (Lebesgue), 111
measure, 111, 240
counting, 240
Lebesgue, 111
Lebesgue, outer, 110
Lebesgue, two-dimensional, 194
spectral, 241
mesh, 72
metric, 38
associated with a norm, 37
discrete, 38
induced, 39
metric space
(sequentially) compact, 64
compact, 72
precompact, 72
product, 75
separable, 71
midpoint-convex, 264
minimal (element in an ordered set), 315
minimal norm, 129, 142
minimization problem (quadratic), 145
Minkowski’s inequality, 29
minmax principle, 244
modulus, 322
moment
operator, 301
problem, 301
sequence, 174
monotone convergence theorem, 113
multiplication
abstract, 209
of two operators, 22
scalar, of functions, 326
scalar, of operators, 21
vectors with scalars, 323
multiplication operator
on C[a, b], 31
on ℓp, 27
on Lp, 128
multiplier sequence, 27
negative part (of a function), 114
Neumann series, 203
Newton’s method, 93
norm, 18
induced by an inner product, 5
attained, 27
of an operator, 22
stronger/weaker, 66
uniform, 44
norm (concrete)
1-norm ||·||1 on Kd, 19
1-norm ||·||1, on C[a, b], 19
1-norm ||·||1, on L1(X), 118
1-norm ||·||1, on ℓ1, 20
1-norm ||·||1, on L1(X), 113
2-norm ||·||2, on C[a, b], 5
2-norm ||·||2, on Kd, 5
2-norm ||·||2, on ℓ2, 17
2-norm ||·||2, on L2(X) and L2(X), 121
||·||(α) on Cα([a, b]; E), 35
p-norm ||·||p, on ℓp, 28
p-norm ||·||p, on Lp(X) and Lp(X), 123
Euclidean on Kd, 5
Hilbert–Schmidt ∥·∥HS, 201
maximum norm ||·||∞, on Kd, 19
on H1, 182
supremum norm ||·||∞, on C[a, b], 19
supremum norm, on B(Ω), 20
variation norm ||·||v on BV([a, b]; E), 34
normal operator, 240
normed space, 18
null operator, 245
null sequence, 33, 48
null space, see also kernel, 325
numerical radius, 234

open
ball, 38
cover, 72
subset, 55
open mapping theorem, 267
operator, see also linear mapping, 21
abstract Hilbert–Schmidt, 223
adjoint (Hilbert space), 218
Banach space adjoint, 285
bounded, 21
compact, 214
convolution, 166
Dirichlet Laplacian, 247
dual, 285
exponential, 210
finite-dimensional, 211
finitely approximable, 211
Fourier transform, 128
Hermitian, 234
Hilbert–Hankel, 208
Hilbert–Schmidt (integral), 198
identity I, 24
integral, 194
invertible, 89, 196, 272
Laplace, 187
Laplace transform, 198
Laplacian, mixed b.c., 255
left and right shift, 26
moment, 301
monotonic, 340
multiplication on $C[a,b]$, 31
multiplication on ℓ^p, 27
multiplication on L^p, 128
norm, 22
normal, 240, 245
nuclear, 245
of finite rank, 211
of integration J, 179, 200
of trace class, 245
positive self-adjoint, 242
Schrödinger, one-dimensional, 249
self-adjoint, 234
semigroup, 254
strict contraction, 203
Sturm-Liouville, 249

Volterra, on $C[a,b]$, 204
Volterra, the, 254
zero 0, 24
order completeness, 319
ordered
pair, 330
set, 314
ordering
partial, 314
reverse, 315
total, 314
orthogonal, 6
decomposition, 135
projection, 8, 133, 141
orthonormal basis
countable, 139
general, 353
orthonormal system, 7
maximal, countable, 139
maximal, general, 353
outer measure, 110
pair (ordered), 330
pairing, 290
canonical, 290
parallelogram law, 5
Parseval’s identity, 138, 160
for double series, 143
partial ordering, 314
partially ordered set, 314
perpendicular, 6
Plancherel’s identity, 170, 346
Poincaré inequality, 185, 190
point evaluation, 25, 326
pointwise convergence, 44
Poisson problem, 177, 184, 187, 196
polarization identity, 5, 11
positive cone, 141
positive part (of a function), 114
positively homogeneous, 279
potential function, 249
precompact (metric space), 72
principle of nested balls, 262
probability vector, 99
product
(Cartesian) of sets, 330
of metric spaces, 75
of normed spaces, 75
of two operators, 22
product measurable, 194
product rule (for H^1-functions), 189
projection
associated with a direct sum, 326
orthogonal, 8, 133, 141
Pythagoras’ lemma, 7

quadratic form, 328
quadratic minimization, 137, 145
quadratic variation (of a sequence), 53
quotient space, 327

range (of a linear mapping), 64, 325
real part, 321
rectangle, 194
reflexive, 312, 314
regulated function, 91, 295
relation
equivalence, 312
functional, 330
set-theoretic, 330
relatively compact, 75
representative (for an equivalence class), 313
resolvent (of an operator), 243
resolvent identity, 243
resolvent set, 243
Riemann sum, 108
Riemann–Lebesgue lemma, 162, 163
Riemann–Stieltjes integral, 175
Riesz representation theorem, 297
Riesz’ lemma, 70
Riesz–Fréchet theorem, 136, 217, 220, 250, 292
Riesz-Fréchet theorem, 145

sandwich theorem, 60
scalar product, 3
self-adjoint operator, 234
semi-inner product, 145
semigroup, strongly continuous, 254
separable
Hilbert space, 141
metric space, 71
normed space, 71, 280
separating the points, 278
separation lemma, 284
sequence, 311
absolutely summable, 87
Cauchy, 79
convergent, 40
double, 52
finite, 48
multiplier, 27
null, 33, 48

of bounded variation, 52
of finite quadratic variation, 53
two-sided, 143
uniformly convergent, 44
weakly convergent, 288
sequentially compact, 64
series
(simply) convergent, 87
absolutely convergent, 87
double, 91
Neumann, 203
orthogonal, 137
unconditionally convergent, 352
sesquilinear form, 3, 328

set
(Lebesgue) null, 115
Cantor’s “middle thirds”, 116
Cartesian product, 330
complement, 330
covex, 131
difference, 330
empty, 329
equality of sets, 329
functional relation, 330
image (under a mapping), 330
index set, 331
intersection, 330, 331
inverse image (under a mapping), 330
midpoint-convex, 264
power set, 330
relation, 330
singleton, 329
subset, 329
symmetric, 264
union, 330, 331
shift (left and right), 26
σ-algebra, 111
singleton set, 329
singular value decomposition, 245
singular values, 245
Sobolev space
first order, 178
higher order, 184
space
(topological dual, 277
abstract vector space, 322
algebraic dual, 327
Banach, 84
complete metric, 80
double dual, 286
finite-dimensional, 324
Subject Index

Hilbert, 81
infinite-dimensional, 324
inner product, 3
linear, 323
metric, 38
normed, 18
pre-Hilbert, 3
quotient, 91
reflexive, 287
separable, 141, 282
Sobolev (first order), 178
Sobolev (higher order), 184

space (concrete)
\(L(E; F), L(E), 21 \)
\(C(E; F), 214 \)
\(C_0(E; F), 211 \)
\(BV([a, b]; E), 35, 91 \)
\(BV_0[a, b], 295 \)
\(BV_0^1[a, b], 298 \)
\(B(\Omega), 20, 84 \)
\(C_b(\Omega), 86 \)
\(C_c(\mathbb{R}), 153 \)
\(C_c^\infty(\mathbb{R}), 155 \)
\(C([a, b]; E), 104 \)
\(C[a, b], 1, 85 \)
\(C_0^1(\Omega), 187 \)
\(C_0^1[a, b], 62, 177 \)
\(C_0^\alpha([a, b]; E), 35, 91 \)
\(C_\infty[a, b], 50 \)
\(C^k[a, b], 50 \)
\(C_0[a, b], 51 \)
\(C_{per}[0, 1], 157 \)
\(T[a, b], 1 \)
\(L^1(X), 113 \)
\(L^1(X), 118 \)
\(L^\infty(X), 122 \)
\(L^2(X), 121 \)
\(L^p(X), 123 \)
\(L^1(X \times Y), 194 \)
\(L^2(X \times Y), 194 \)
\(L^p(\mathbb{R}), 152 \)
\(H^1(a, b), 178 \)
\(H_0^1(a, b), 185 \)
\(H^\infty(a, b), 183 \)
\(\mathcal{M}(X), 112 \)
\(\mathcal{M}_+(X), 113 \)
\(PL[a, b], 149 \)
\(P[a, b], 50 \)
\(R[a, b], 107 \)
\(Reg([a, b], E), 91 \)
\(Reg_s([a, b], 296 \)
\(St([a, b]; E), 35, 91 \)
\(UC_0(\Omega), 89 \)
\(K^d, 1 \)
\(c_{00}, 48, 88, 89 \)
\(\ell^1, 20 \)
\(\ell^2, 17 \)
\(\ell^2(\mathbb{Z}), 143 \)
\(\ell^\infty, 20, 85 \)
\(p^p, 28 \)
\(s, 92 \)
span, see also linear span
special regulated function, 296
spectral decomposition, 237
spectral measure, 241
spectral theorem
for compact self-adjoint operators, 236
for compact normal operators, 245
for normal operators, 241
spectrum
of a matrix, 232
of an operator, 232, 243
standard unit vectors, 25
Steinitz' theorem, 324
step function, 35, 295
strong convergence lemma, 164
stronger/weaker norm, 66
strongly convergent, 201
Sturm–Liouville problem, 221, 225, 228, 249
subadditive, 279
subcover (of an open cover), 72
sublinear functional, 279
subsequence (of a sequence), 312
subspace
of a metric space, 39
of a vector space, 323
summable
\(p^p, 28 \)
absolutely, 20
square, 17, 143
unconditionally, 352
support (of a function), 152
supremum, 315
supremum norm, 20
surjective (mapping), 330
symmetric, 38, 312
form, 328
set, 264
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>system of representatives, 313</td>
</tr>
<tr>
<td>target set or space, 330</td>
</tr>
<tr>
<td>theorem</td>
</tr>
<tr>
<td>Weierstrass, trigonometric version, 160</td>
</tr>
<tr>
<td>Baire, 262, 275</td>
</tr>
<tr>
<td>Banach–Steinhaus, 265</td>
</tr>
<tr>
<td>Bessel’s inequality, 8, 138</td>
</tr>
<tr>
<td>Bolzano–Weierstrass, 65, 69, 320</td>
</tr>
<tr>
<td>bounded inverse, 268</td>
</tr>
<tr>
<td>Carlson–Beurling inequality, 348</td>
</tr>
<tr>
<td>Cauchy–Schwarz inequality, 15</td>
</tr>
<tr>
<td>closed graph, 270</td>
</tr>
<tr>
<td>completion (of a metric space), 334</td>
</tr>
<tr>
<td>completion (of a normed space), 286, 337</td>
</tr>
<tr>
<td>contraction principle, 94</td>
</tr>
<tr>
<td>Dini, 77</td>
</tr>
<tr>
<td>Dirichlet–Dini criterion, 159</td>
</tr>
<tr>
<td>dominated convergence, 118</td>
</tr>
<tr>
<td>du Bois-Reymond, 159, 266</td>
</tr>
<tr>
<td>Fejér, 167</td>
</tr>
<tr>
<td>Fourier inversion formula, 174, 347</td>
</tr>
<tr>
<td>Fredholm alternative, 238</td>
</tr>
<tr>
<td>Fubini, 194</td>
</tr>
<tr>
<td>fundamental theorem of calculus for H^1, 182</td>
</tr>
<tr>
<td>Gram–Schmidt, 9</td>
</tr>
<tr>
<td>Hahn–Banach separation, 145, 284</td>
</tr>
<tr>
<td>Hahn–Banach, general case, 282</td>
</tr>
<tr>
<td>Hahn–Banach, separable case, 280</td>
</tr>
<tr>
<td>Hausdorff maximality, 316</td>
</tr>
<tr>
<td>Hellinger–Toeplitz, 275</td>
</tr>
<tr>
<td>Hölder’s inequality</td>
</tr>
<tr>
<td>$(p = 1, q = \infty)$, 123</td>
</tr>
<tr>
<td>$(p = q = 2)$, 122</td>
</tr>
<tr>
<td>discrete, 30</td>
</tr>
<tr>
<td>general, 124</td>
</tr>
<tr>
<td>implicit function, 103</td>
</tr>
<tr>
<td>inverse mapping, 102</td>
</tr>
<tr>
<td>Lax–Milgram, 146, 220</td>
</tr>
<tr>
<td>mean value, 101</td>
</tr>
<tr>
<td>Minkowski’s inequality, 29</td>
</tr>
<tr>
<td>minmax principle, 244</td>
</tr>
<tr>
<td>monotone convergence, 113</td>
</tr>
<tr>
<td>Neumann series, 203</td>
</tr>
<tr>
<td>open mapping, 267</td>
</tr>
<tr>
<td>Parseval’s identity, 137, 138, 160</td>
</tr>
<tr>
<td>for double series, 143</td>
</tr>
<tr>
<td>Plancherel’s identity, 170, 346</td>
</tr>
<tr>
<td>Poincaré inequality, 185, 190, 256</td>
</tr>
<tr>
<td>principle of nested balls, 262</td>
</tr>
<tr>
<td>Pythagoras’, 7</td>
</tr>
<tr>
<td>Riemann–Lebesgue lemma, 162, 163</td>
</tr>
<tr>
<td>Riesz representation, 297</td>
</tr>
<tr>
<td>Riesz’ lemma, 70</td>
</tr>
<tr>
<td>Riesz–Fréchet, 136, 217, 220, 250, 292</td>
</tr>
<tr>
<td>Riesz–Kakutani, 298</td>
</tr>
<tr>
<td>Riesz-Fréchet, 145</td>
</tr>
<tr>
<td>separation lemma, 284</td>
</tr>
<tr>
<td>spectral theorem (for cp. normal), 245</td>
</tr>
<tr>
<td>spectral theorem (for cp. self-adj.), 236</td>
</tr>
<tr>
<td>spectral theorem (general), 241</td>
</tr>
<tr>
<td>Steinitz, 324</td>
</tr>
<tr>
<td>strong convergence lemma, 164</td>
</tr>
<tr>
<td>Tietze, 273</td>
</tr>
<tr>
<td>uniform boundedness principle, 264</td>
</tr>
<tr>
<td>uniqueness for Fourier series, 161</td>
</tr>
<tr>
<td>Weierstrass, 50, 149, 339</td>
</tr>
<tr>
<td>Weierstrass’ M-test, 87</td>
</tr>
<tr>
<td>Young’s inequality, 175</td>
</tr>
<tr>
<td>Zorn’s lemma, 315</td>
</tr>
<tr>
<td>totally ordered set, 314</td>
</tr>
<tr>
<td>trace class operator, 245</td>
</tr>
<tr>
<td>transitive, 312, 314</td>
</tr>
<tr>
<td>transposed matrix, 216</td>
</tr>
<tr>
<td>triangle inequality</td>
</tr>
<tr>
<td>for metrics, 38</td>
</tr>
<tr>
<td>for norms, 16, 18</td>
</tr>
<tr>
<td>second t.i., for metrics, 60</td>
</tr>
<tr>
<td>second t.i., for norms, 61</td>
</tr>
<tr>
<td>trigonometric polynomial, 156</td>
</tr>
<tr>
<td>trigonometric system, 10, 156</td>
</tr>
<tr>
<td>truncation, 152</td>
</tr>
<tr>
<td>unconditional convergence (of a series), 352</td>
</tr>
<tr>
<td>uncountable (set), 316</td>
</tr>
<tr>
<td>uniform boundedness principle, 264</td>
</tr>
<tr>
<td>uniformly bounded (set of operators), 264</td>
</tr>
<tr>
<td>uniformly continuous, 65</td>
</tr>
<tr>
<td>unit ball (of a normed space), 23</td>
</tr>
<tr>
<td>unit vectors, standard, 25</td>
</tr>
<tr>
<td>unitarily equivalent, 240</td>
</tr>
<tr>
<td>upper bound, 315</td>
</tr>
<tr>
<td>variational method, 185</td>
</tr>
<tr>
<td>variational problem, 137, 145</td>
</tr>
<tr>
<td>vector space, 322</td>
</tr>
<tr>
<td>Volterra integral equation, 205</td>
</tr>
</tbody>
</table>
Volterra operator
 the, 254
 abstract, 204

weak
 convergence, 75, 288
 derivative, 178
 gradient, 187
 limit, 288
weaker/stronger norm, 66
Weierstrass theorem, 50, 149
Weierstrass' M-test, 87
well-defined operation, 313
well-posedness (of an equation), 196
Wronskian, 251

Young's inequality, 175

Zorn's lemma, 315