Contents

Preface xiii

Chapter 1. Inner Product Spaces 1
 §1.1. Inner Products 3
 §1.2. Orthogonality 6
 §1.3. The Trigonometric System 10
 Exercises 11

Chapter 2. Normed Spaces 15
 §2.1. The Cauchy–Schwarz Inequality and the Space ℓ² 15
 §2.2. Norms 18
 §2.3. Bounded Linear Mappings 21
 §2.4. Basic Examples 23
 §2.5. *The ℓp-Spaces (1 ≤ p < ∞) 28
 Exercises 31

Chapter 3. Distance and Approximation 37
 §3.1. Metric Spaces 37
 §3.2. Convergence 39
 §3.3. Uniform, Pointwise and (Square) Mean Convergence 41
 §3.4. The Closure of a Subset 47
 Exercises 50

Chapter 4. Continuity and Compactness 55
 §4.1. Open and Closed Sets 55
Contents

§4.2. Continuity 58
§4.3. Sequential Compactness 64
§4.4. Equivalence of Norms 66
§4.5. *Separability and General Compactness 71
Exercises 74

Chapter 5. Banach Spaces 79
§5.1. Cauchy Sequences and Completeness 79
§5.2. Hilbert Spaces 81
§5.3. Banach Spaces 84
§5.4. Series in Banach Spaces 86
Exercises 88

Chapter 6. *The Contraction Principle 93
§6.1. Banach’s Contraction Principle 94
§6.2. Application: Ordinary Differential Equations 95
§6.3. Application: Google’s PageRank 98
§6.4. Application: The Inverse Mapping Theorem 100
Exercises 104

Chapter 7. The Lebesgue Spaces 107
§7.1. The Lebesgue Measure 110
§7.2. The Lebesgue Integral and the Space $L^1(X)$ 113
§7.3. Null Sets 115
§7.4. The Dominated Convergence Theorem 118
§7.5. The Spaces $L^p(X)$ with $1 ≤ p ≤ ∞$ 121
Advice for the Reader 125
Exercises 126

Chapter 8. Hilbert Space Fundamentals 129
§8.1. Best Approximations 129
§8.2. Orthogonal Projections 133
§8.3. The Riesz–Fréchet Theorem 135
§8.4. Orthogonal Series and Abstract Fourier Expansions 137
Exercises 141

Chapter 9. Approximation Theory and Fourier Analysis 147
§9.1. Lebesgue’s Proof of Weierstrass’ Theorem 149
§9.2. Truncation 151
§9.3. Classical Fourier Series 156
§9.4. Fourier Coefficients of L^1-Functions 161
§9.5. The Riemann–Lebesgue Lemma 162
§9.6. *The Strong Convergence Lemma and Fejér’s Theorem 164
§9.7. *Extension of a Bounded Linear Mapping 168
Exercises 172

Chapter 10. Sobolev Spaces and the Poisson Problem 177
§10.1. Weak Derivatives 177
§10.2. The Fundamental Theorem of Calculus 179
§10.3. Sobolev Spaces 182
§10.4. The Variational Method for the Poisson Problem 184
§10.5. *Poisson’s Problem in Higher Dimensions 187
Exercises 188

Chapter 11. Operator Theory I 193
§11.1. Integral Operators and Fubini’s Theorem 193
§11.2. The Dirichlet Laplacian and Hilbert–Schmidt Operators 196
§11.3. Approximation of Operators 199
§11.4. The Neumann Series 202
Exercises 205

Chapter 12. Operator Theory II 211
§12.1. Compact Operators 211
§12.2. Adjoints of Hilbert Space Operators 216
§12.3. *The Lax–Milgram Theorem 219
§12.4. *Abstract Hilbert–Schmidt Operators 221
Exercises 226

Chapter 13. Spectral Theory of Compact Self-Adjoint Operators 231
§13.1. Approximate Eigenvalues 231
§13.2. Self-Adjoint Operators 234
§13.3. The Spectral Theorem 236
§13.4. *The General Spectral Theorem 240
Exercises 241

Chapter 14. Applications of the Spectral Theorem 247