40 2. FOUR IMPORTANT LINEAR PDE DEFINITION. Green’s function for the unit ball is (41) G(x, y) := Φ(y x) Φ(|x|(y ˜)) x (x, y B(0, 1), x = y). The same formula is valid for n = 2 as well. Assume now u solves the boundary-value problem (42) Δu = 0 in B0(0, 1) u = g on ∂B(0, 1). Then using (30), we see (43) u(x) = ∂B(0,1) g(y) ∂G ∂ν (x, y) dS(y). According to formula (41), Gyi (x, y) = Φyi (y x) Φ(|x|(y ˜))yi x . But Φyi (y x) = 1 nα(n) xi yi |x y|n , and furthermore Φ(|x|(y ˜))yi x . = −1 nα(n) yi|x|2 xi (|x||y ˜|)n x = 1 nα(n) yi|x|2 xi |x y|n if y ∂B(0, 1). Accordingly ∂G ∂ν (x, y) = n i=1 yiGyi (x, y) = −1 nα(n) 1 |x y|n n i=1 yi((yi xi) yi|x|2 + xi) = −1 nα(n) 1 |x|2 |x y|n . Hence formula (43) yields the representation formula u(x) = 1 |x|2 nα(n) ∂B(0,1) g(y) |x y|n dS(y). Suppose now instead of (42) u solves the boundary-value problem (44) Δu = 0 in B0(0,r) u = g on ∂B(0,r)
Previous Page Next Page