Contents

Preface ix

Chapter 1. Introduction 1
 §1.1. Discrete Markov Chain 2
 §1.2. Exercises 9

Chapter 2. Probability Primer 11
 §2.1. Probability 11
 §2.2. Random Variables and their Distributions 17
 §2.3. Expectation, Variance, and Covariance 22
 §2.4. Multivariate Normal Distribution 30
 §2.5. Limit Theorems 33
 §2.6. Exercises 37

Chapter 3. Algebra Primer 41
 §3.1. Varieties 41
 §3.2. Ideals 45
 §3.3. Gröbner Bases 49
 §3.4. First Applications of Gröbner Bases 55
 §3.5. Computational Algebra Vignettes 59
 §3.6. Projective Space and Projective Varieties 65
 §3.7. Exercises 68

Chapter 4. Conditional Independence 71
 §4.1. Conditional Independence Models 72
§4.2. Primary Decomposition 79
§4.3. Primary Decomposition of CI Ideals 86
§4.4. Exercises 95

Chapter 5. Statistics Primer 99
§5.1. Statistical Models 99
§5.2. Types of Data 102
§5.3. Parameter Estimation 104
§5.4. Hypothesis Testing 109
§5.5. Bayesian Statistics 113
§5.6. Exercises 116

Chapter 6. Exponential Families 117
§6.1. Regular Exponential Families 118
§6.2. Discrete Regular Exponential Families 121
§6.3. Gaussian Regular Exponential Families 125
§6.4. Real Algebraic Geometry 128
§6.5. Algebraic Exponential Families 132
§6.6. Exercises 134

Chapter 7. Likelihood Inference 137
§7.1. Algebraic Solution of the Score Equations 138
§7.2. Likelihood Geometry 146
§7.3. Concave Likelihood Functions 152
§7.4. Likelihood Ratio Tests 160
§7.5. Exercises 166

Chapter 8. The Cone of Sufficient Statistics 169
§8.1. Polyhedral Geometry 169
§8.2. Discrete Exponential Families 173
§8.3. Gaussian Exponential Families 179
§8.4. Exercises 186

Chapter 9. Fisher’s Exact Test 189
§9.1. Conditional Inference 189
§9.2. Markov Bases 194
§9.3. Markov Bases for Hierarchical Models 203
§9.4. Graver Bases and Applications 215
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§9.5.</td>
<td>Lattice Walks and Primary Decompositions</td>
<td>219</td>
</tr>
<tr>
<td>§9.6.</td>
<td>Other Sampling Strategies</td>
<td>221</td>
</tr>
<tr>
<td>§9.7.</td>
<td>Exercises</td>
<td>223</td>
</tr>
<tr>
<td>Chapter 10.</td>
<td>Bounds on Cell Entries</td>
<td>227</td>
</tr>
<tr>
<td>§10.1.</td>
<td>Motivating Applications</td>
<td>227</td>
</tr>
<tr>
<td>§10.2.</td>
<td>Integer Programming and Gröbner Bases</td>
<td>233</td>
</tr>
<tr>
<td>§10.3.</td>
<td>Quotient Rings and Gröbner Bases</td>
<td>236</td>
</tr>
<tr>
<td>§10.4.</td>
<td>Linear Programming Relaxations</td>
<td>238</td>
</tr>
<tr>
<td>§10.5.</td>
<td>Formulas for Bounds on Cell Entries</td>
<td>244</td>
</tr>
<tr>
<td>§10.6.</td>
<td>Exercises</td>
<td>248</td>
</tr>
<tr>
<td>Chapter 11.</td>
<td>Exponential Random Graph Models</td>
<td>251</td>
</tr>
<tr>
<td>§11.1.</td>
<td>Basic Setup</td>
<td>252</td>
</tr>
<tr>
<td>§11.2.</td>
<td>The Beta Model and Variants</td>
<td>255</td>
</tr>
<tr>
<td>§11.3.</td>
<td>Models from Subgraphs Statistics</td>
<td>261</td>
</tr>
<tr>
<td>§11.4.</td>
<td>Exercises</td>
<td>263</td>
</tr>
<tr>
<td>Chapter 12.</td>
<td>Design of Experiments</td>
<td>265</td>
</tr>
<tr>
<td>§12.1.</td>
<td>Designs</td>
<td>266</td>
</tr>
<tr>
<td>§12.2.</td>
<td>Computations with the Ideal of Points</td>
<td>271</td>
</tr>
<tr>
<td>§12.3.</td>
<td>The Gröbner Fan and Applications</td>
<td>274</td>
</tr>
<tr>
<td>§12.4.</td>
<td>Two-level Designs and System Reliability</td>
<td>280</td>
</tr>
<tr>
<td>§12.5.</td>
<td>Exercises</td>
<td>285</td>
</tr>
<tr>
<td>Chapter 13.</td>
<td>Graphical Models</td>
<td>287</td>
</tr>
<tr>
<td>§13.2.</td>
<td>Parametrizations of Graphical Models</td>
<td>294</td>
</tr>
<tr>
<td>§13.3.</td>
<td>Failure of the Hammersley-Clifford Theorem</td>
<td>305</td>
</tr>
<tr>
<td>§13.4.</td>
<td>Examples of Graphical Models from Applications</td>
<td>307</td>
</tr>
<tr>
<td>§13.5.</td>
<td>Exercises</td>
<td>310</td>
</tr>
<tr>
<td>Chapter 14.</td>
<td>Hidden Variables</td>
<td>313</td>
</tr>
<tr>
<td>§14.1.</td>
<td>Mixture Models</td>
<td>314</td>
</tr>
<tr>
<td>§14.2.</td>
<td>Hidden Variable Graphical Models</td>
<td>321</td>
</tr>
<tr>
<td>§14.3.</td>
<td>The EM Algorithm</td>
<td>329</td>
</tr>
<tr>
<td>§14.4.</td>
<td>Exercises</td>
<td>333</td>
</tr>
<tr>
<td>Chapter 15.</td>
<td>Phylogenetic Models</td>
<td>335</td>
</tr>
</tbody>
</table>
§15.1. Trees and Splits 336
§15.2. Types of Phylogenetic Models 339
§15.3. Group-based Phylogenetic Models 347
§15.4. The General Markov Model 358
§15.5. The Allman-Rhodes-Draisma-Kuttler Theorem 365
§15.6. Exercises 368

Chapter 16. Identifiability 371
§16.1. Tools for Testing Identifiability 372
§16.2. Linear Structural Equation Models 379
§16.3. Tensor Methods 385
§16.4. State Space Models 390
§16.5. Exercises 396

Chapter 17. Model Selection and Bayesian Integrals 399
§17.1. Information Criteria 400
§17.2. Bayesian Integrals and Singularities 405
§17.3. The Real Log-Canonical Threshold 410
§17.4. Information Criteria for Singular Models 418
§17.5. Exercises 422

Chapter 18. MAP Estimation and Parametric Inference 423
§18.1. MAP Estimation General Framework 424
§18.2. Hidden Markov Models and the Viterbi Algorithm 426
§18.3. Parametric Inference and Normal Fans 432
§18.4. Polytope Algebra and Polytope Propogation 435
§18.5. Exercises 437

Chapter 19. Finite Metric Spaces 439
§19.1. Metric Spaces and the Cut Polytope 439
§19.2. Tree Metrics 447
§19.3. Finding an Optimal Tree Metric 453
§19.4. Toric Varieties Associated to Finite Metric Spaces 458
§19.5. Exercises 461

Bibliography 463

Index 481