Contents

Preface .. vii
Notation .. xi
And then there were infinitely many 1

Part 1. First principles

Chapter 1. Asymptotic estimates 8
Chapter 2. Combinatorial ways to count primes 27
Chapter 3. The Dirichlet convolution 35
Chapter 4. Dirichlet series 44

Part 2. Methods of complex and harmonic analysis

Chapter 5. An explicit formula for counting primes 52
Chapter 6. The Riemann zeta function 62
Chapter 7. The Perron inversion formula 70
Chapter 8. The Prime Number Theorem 84
Chapter 9. Dirichlet characters 95
Chapter 10. Fourier analysis on finite abelian groups 100
Chapter 11. Dirichlet L-functions 110
Chapter 12. The Prime Number Theorem for arithmetic progressions 118
Part 3. Multiplicative functions and the anatomy of integers

Chapter 13. Primes and multiplicative functions
Chapter 14. Evolution of sums of multiplicative functions
Chapter 15. The distribution of multiplicative functions
Chapter 16. Large deviations

Part 4. Sieve methods

Chapter 17. Twin primes
Chapter 18. The axioms of sieve theory
Chapter 19. The Fundamental Lemma of Sieve Theory
Chapter 20. Applications of sieve methods
Chapter 21. Selberg’s sieve
Chapter 22. Sieving for zero-free regions

Part 5. Bilinear methods

Chapter 23. Vinogradov’s method
Chapter 24. Ternary arithmetic progressions
Chapter 25. Bilinear forms and the large sieve
Chapter 26. The Bombieri-Vinogradov theorem
Chapter 27. The least prime in an arithmetic progression

Part 6. Local aspects of the distribution of primes

Chapter 28. Small gaps between primes
Chapter 29. Large gaps between primes
Chapter 30. Irregularities in the distribution of primes

Appendices

Appendix A. The Riemann-Stieltjes integral
Appendix B. The Fourier and the Mellin transforms
Appendix C. The method of moments
Bibliography
Index