Preface

This set of notes grew from a graduate course that I taught at Georgia Tech, in Atlanta, during the fall of 1999, on the invitation of Wilfrid Gangbo. It is a great pleasure for me to thank Georgia Tech for its hospitality, and all the faculty members and students who attended this course, for their interest and their curiosity. Among them, I wish to express my particular gratitude to Eric Carlen, Laci Erdös, Michael Loss, and Andrzej Swiech. It was Eric and Michael who first suggested that I make a book out of the lecture notes intended for the students.

Three years passed by before I was able to complete these notes; of course, I took into account as much as I could of the mathematical progress made during those years.

Optimal mass transportation was born in France in 1781, with a very famous paper by Gaspard Monge, *Mémoire sur la théorie des déblais et des remblais*. Since then, it has become a classical subject in probability theory, economics and optimization. Very recently it gained extreme popularity, because many researchers in different areas of mathematics understood that this topic was strongly linked to their subject. Again, one can give a precise birthdate for this revival: the 1987 note by Yann Brenier, *Décomposition polaire et réarrangement des champs de vecteurs*. This paper paved the way towards a beautiful interplay between partial differential equations, fluid mechanics, geometry, probability theory and functional analysis, which has developed over the last ten years, through the contributions of a number of authors, with optimal transportation problems as a common denominator.
These notes are definitely not intended to be exhaustive, and should rather be seen as an introduction to the subject. Their reading can be complemented by some of the reference texts which have appeared recently. In particular, I should mention the two volumes of *Mass transportation problems*, by Rachev and Rüschendorf, which depict many applications of Monge-Kantorovich distances to various problems, together with the classical theory of the optimal transportation problem in a very abstract setting; the survey by Evans, which can also be considered as an introduction to the subject, and describes several applications of the L^1 theory (i.e., when the cost function is a distance) which I did not cover in these notes; the extremely clear lecture notes by Ambrosio, centered on the L^1 theory from the point of view of calculus of variations; and also the lecture notes by Urbas, which are a marvelous reference for the regularity theory of the Monge-Ampère equation arising in mass transportation. Also recommended is a very pedagogical and rather complete article recently written by Ambrosio and Pratelli, and focused on the L^1 theory, from which I extracted many remarks and examples.

The present volume does not go too deeply into some of the aspects which are very well treated in the above-mentioned references: in particular, the L^1 theory is just sketched, and so is the regularity theory developed by Caffarelli and by Urbas. Several topics are hardly mentioned, or not at all: the application of mass transportation to the problem of shape optimization, as developed by Bouchitté and Buttazzo; the fascinating semi-geostrophic system in meteorology, whose links with optimal transportation are now understood thanks to the amazing work of Cullen, Purser and collaborators; or applications to image processing, developed by Tannenbaum and his group. On the other hand, I hope that this text is a good elementary reference source for such topics as displacement interpolation and its applications to functional inequalities with a geometrical content, or the differential viewpoint of Otto, which has proven so successful in various contexts (like the study of rates of equilibration for certain dissipative equations). I have tried to keep proofs as simple as possible throughout the book, keeping in mind that they should be understandable by non-expert students. I have also stated many results without proofs, either to convey a better intuition, or to give an account of recent research in the field. In the end, these notes are intended to serve both as a course, and as a survey.

Though the literature on the Monge-Kantorovich problem is enormous, I did not want the bibliography to become gigantic, and therefore I did not try to give complete lists of references. Many authors who did valuable work on optimal transportation problems (Abdellaoui, Cuesta-Albertos, Dall’Aglio, Kellerer, Matrán, Tuero-Díaz, and many others) are not even cited within
the text; I apologize for that. Much more complete lists of references on the Monge-Kantorovich problem can be found in Gangbo and McCann [141], and especially in Rachev and Rüschendorf [211]. On the other hand, I did not hesitate to give references for subjects whose relation to the optimal transportation problem is not necessarily immediate, whenever I felt that this could give the reader some insights in related fields.

At first I did not intend to consider the optimal mass transportation problem in a very general framework. But a graduate course that I taught in the fall of 2001 on the mean-field limit in statistical physics, made me realize the practical importance of handling mass transportation on infinite-dimensional spaces such as the Wiener space, or the space of probability measures on some phase space. Tools like the Kantorovich duality, or the metric properties induced by optimal transportation, happen to be very useful in such contexts — as was understood long ago by people doing research in mathematical statistics. This is why in Chapters 1 and 7 I have treated those topics under quite general assumptions, in a context of Polish spaces (which is not the most general setting that one could imagine, but which is sufficient for all the applications I am used to). Almost all the rest of the notes deals with finite-dimensional spaces. Let me mention that several researchers, in particular Üstünel and F.-Y. Wang, are currently working to extend some of the geometrical results described below to an infinite-dimensional setting allowing for the Wiener space.

A more precise overview of the contents of this book is given at the end of the Introduction, after a precise statement of the problem. I shall also summarize at the beginning the main notation used in the text; to avoid devastating confusion, note carefully the definition of a “small set” in \mathbb{R}^n, as a set of Hausdorff dimension at most $n - 1$.

As the reader should understand, the subject is still very vivid and likely to get into new developments in the next years. Among topics which are still waiting for progress, let me only mention the numerical methods for computing optimal transportations. At the time of this writing, some noticeable progress seems to have been done on this subject by Tannenbaum and his coworkers. Even though these beautiful new schemes seem extremely promising, they need confirmation from the mathematical point of view, which is one reason why I skipped this topic (the other reason being my lack of competence). Some related results can be found in [152].

Also I wish to emphasize that optimal mass transportation, besides its own intrinsic interest, sometimes appears as a surprisingly effective tool in problems which do not a priori seem to have any relation to it. For this reason I think that getting at least superficially acquainted with it is a wise
investment for any student in probability, analysis or partial differential
equations.

This book owes a lot to many people. I was lucky enough to learn the
subject of optimal mass transportation directly from two of those researchers
who have most contributed to turn it into a fascinating area: Yann Brenier
and Felix Otto; it is a pleasure here to express my enormous gratitude to
them. I first encountered optimal transportation in Tanaka’s work about
the Boltzmann equation, and my curiosity about it increased dramatically
from discussions with Yann; but it was only after hearing a beautiful and
enthusiastic lecture given in Paris by Craig Evans, that I made up my mind
to study the subject thoroughly. My involvement in the study of functional
inequalities related to mass transportation was partly triggered by interac-
tions with Michel Ledoux, whose influence is gratefully acknowledged. The
present manuscript profited a lot from numerous discussions with Luigi Amb-
rosio, Eric Carlen, Dario Cordero-Erausquin, Wilfrid Gangbo and Robert
McCann. Both Robert and Luigi taught the material of this book, made
many suggestions and pointed out numerous misprints and mistakes in the
first version of these notes. The most serious one concerned the “proof” of
Theorem 1.3, as given in the first version of these notes; the gap was fixed
thanks to the kind help of Luigi again, and of Bernd Kirchheim, with the
final result of an improved statement. Some of my students at the Ecole
normale supérieure also spotted and repaired a gap in the proof of Theo-
rem 2.18. François Bolley, Jean-François Coulombel and Maxime Hauray
should be thanked for the time they spent hunting for mistakes and mis-
prints in various parts of the book, and testing many of the exercises and
problems. Richard Dudley was kind enough to give a quick but thorough
look at Chapters 1 and 7. Chapter 4 would not have existed without the ex-
planations which I received from Luis Caffarelli and Andrzej Swiech. Most
of the material in Chapter 6 was taught to me by Franck Barthe. Chapter 8
was reshaped by the exchanges which I had with Luigi Ambrosio, Nicola
Gigli and Étienne Ghys during the last stages of preparation of the manu-
script. Finally, Mike Cullen corrected some mistakes in the presentation of
the physical model in Problem 9 of Chapter 10.

All comments, suggestions and bug reports will be extremely welcome
and can be sent to me by electronic mail at cvillani@umpa.ens-lyon.fr.
I will maintain a list of errata on my Internet home-page, accessible via the
Internet server of the Mathematics Department at Ecole normale supérieure
de Lyon, http://www.umpa.ens-lyon.fr/

Cédric Villani
Lyon, January 2003