Contents

Preface to the Second Edition xv
Preface to the First Edition xvii
Chapter 1. Vector spaces 1
§1.1. Preview 1
§1.2. The abstract definition of a vector space 2
§1.3. Some definitions 5
§1.4. Mappings 11
§1.5. Triangular matrices 13
§1.6. Block triangular matrices 17
§1.7. Schur complements 18
§1.8. Other matrix products 20
Chapter 2. Gaussian elimination 21
§2.1. Some preliminary observations 22
§2.2. Examples 24
§2.3. Upper echelon matrices 30
§2.4. The conservation of dimension 36
§2.5. Quotient spaces 38
§2.6. Conservation of dimension for matrices 38
§2.7. From U to A 40
§2.8. Square matrices 41
Chapter 3. Additional applications of Gaussian elimination 45
§5.10. Circulants and Vandermonde matrices 111

Chapter 6. Calculating Jordan forms 113
§6.1. Overview 114
§6.2. Structure of the nullspaces \mathcal{N}_{B^j} 114
§6.3. Chains and cells 116
§6.4. Computing J 117
§6.5. An algorithm for computing U 118
§6.6. A simple example 120
§6.7. A more elaborate example 122
§6.8. Jordan decompositions for real matrices 125
§6.9. Projection matrices 128
§6.10. Companion and generalized Vandermonde matrices 128

Chapter 7. Normed linear spaces 133
§7.1. Four inequalities 133
§7.2. Normed linear spaces 138
§7.3. Equivalence of norms 140
§7.4. Norms of linear transformations 142
§7.5. Operator norms for matrices 144
§7.6. Mixing tops and bottoms 146
§7.7. Evaluating some operator norms 146
§7.8. Inequalities for multiplicative norms 148
§7.9. Small perturbations 151
§7.10. Bounded linear functionals 154
§7.11. Extensions of bounded linear functionals 155
§7.12. Banach spaces 158
§7.13. Bibliographical notes 160

Chapter 8. Inner product spaces and orthogonality 161
§8.1. Inner product spaces 161
§8.2. A characterization of inner product spaces 164
§8.3. Orthogonality 165
§8.4. Gram matrices 167
§8.5. Projections and direct sum decompositions 168
§8.6. Orthogonal projections 170
§8.7. Orthogonal expansions 173
§8.8. The Gram-Schmidt method 175
§8.9. Toeplitz and Hankel matrices 176
§8.10. Adjoints 178
§8.11. The Riesz representation theorem 182
§8.12. Normal, selfadjoint and unitary transformations 184
§8.13. Auxiliary formulas 186
§8.15. Bibliographical notes 190

Chapter 9. Symmetric, Hermitian and normal matrices 191
§9.1. Hermitian matrices are diagonalizable 192
§9.2. Commuting Hermitian matrices 194
§9.3. Real Hermitian matrices 196
§9.4. Projections and direct sums in \mathbb{F}^n 197
§9.5. Projections and rank 201
§9.6. Normal matrices 202
§9.7. QR factorization 204
§9.8. Schur’s theorem 205
§9.9. Areas, volumes and determinants 207
§9.10. Boundary value problems 212
§9.11. Bibliographical notes 212

Chapter 10. Singular values and related inequalities 213
§10.1. Singular value decompositions 213
§10.2. Complex symmetric matrices 218
§10.3. Approximate solutions of linear equations 220
§10.4. Fitting a line in \mathbb{R}^2 221
§10.5. Fitting a line in \mathbb{R}^p 222
§10.6. Projection by iteration 223
§10.7. The Courant-Fischer theorem 224
§10.8. Inequalities for singular values 228
§10.9. von Neumann’s inequality for contractive matrices 235
§10.10. Bibliographical notes 236

Chapter 11. Pseudoinverses 237
§11.1. Pseudoinverses 237
§11.2. The Moore-Penrose inverse 244
§11.3. Best approximation in terms of Moore-Penrose inverses 247
§11.4. Drazin inverses 249
§11.5. Bibliographical notes 250

Chapter 12. Triangular factorization and positive definite matrices 251
§12.1. A detour on triangular factorization 252
§12.2. Definite and semidefinite matrices 254
§12.3. Characterizations of positive definite matrices 256
§12.4. An application of factorization 259
§12.5. Positive definite Toeplitz matrices 260
§12.6. Detour on block Toeplitz matrices 266
§12.7. A maximum entropy matrix completion problem 271
§12.8. A class of $A \succ O$ for which (12.52) holds 275
§12.9. Schur complements for semidefinite matrices 277
§12.10. Square roots 280
§12.11. Polar forms 282
§12.12. Matrix inequalities 283
§12.13. A minimal norm completion problem 286
§12.14. A description of all solutions to the minimal norm completion problem 288
§12.15. Bibliographical notes 289

Chapter 13. Difference equations and differential equations 291
§13.1. Systems of difference equations 292
§13.2. Nonhomogeneous systems of difference equations 293
§13.3. The exponential e^{tA} 294
§13.4. Systems of differential equations 296
§13.5. Uniqueness 298
§13.6. Isometric and isospectral flows 299
§13.7. Second-order differential systems 300
§13.8. Stability 301
§13.9. Nonhomogeneous differential systems 301
§13.10. Strategy for equations 302
§13.11. Second-order difference equations 303
§13.12. Higher order difference equations 306
§13.15. Wronskians 311
§13.16. Variation of parameters 313

Chapter 14. Vector-valued functions 315
§14.1. Mean value theorems 315
§14.2. Taylor’s formula with remainder 316
§14.3. Application of Taylor’s formula with remainder 317
§14.4. Mean value theorem for functions of several variables 318
§14.5. Mean value theorems for vector-valued functions of several variables 319
§14.6. A contractive fixed point theorem 321
§14.7. Newton’s method 324
§14.8. A refined contractive fixed point theorem 327
§14.9. Spectral radius 328
§14.10. The Brouwer fixed point theorem 332
§14.11. Bibliographical notes 336

Chapter 15. The implicit function theorem 337
§15.1. Preliminary discussion 337
§15.2. The implicit function theorem 339
§15.3. A generalization of the implicit function theorem 344
§15.4. Continuous dependence of solutions 346
§15.5. The inverse function theorem 347
§15.6. Roots of polynomials 349
§15.7. An instructive example 349
§15.8. A more sophisticated approach 351
§15.9. Dynamical systems 353
§15.10. Lyapunov functions 355
§15.11. Bibliographical notes 357

Chapter 16. Extremal problems 359
§16.1. Classical extremal problems 359
§16.2. Convex functions 363
§16.3. Extremal problems with constraints 366
§16.4. Examples 368
§16.5. Krylov subspaces 374
§16.6. The conjugate gradient method 374
§16.7. Dual extremal problems 379
§16.8. Linear programming 381
§16.9. Bibliographical notes 386

Chapter 17. Matrix-valued holomorphic functions 387
§17.1. Differentiation 387
§17.2. Contour integration 391
§17.3. Evaluating integrals by contour integration 396
§17.4. A short detour on Fourier analysis 400
§17.5. The Hilbert matrix 403
§17.6. Contour integrals of matrix-valued functions 404
§17.7. Continuous dependence of the eigenvalues 407
§17.8. More on small perturbations 408
§17.9. Spectral radius redux 410
§17.10. Fractional powers 413
§17.11. Bibliographical notes 414

Chapter 18. Matrix equations 415
§18.1. The equation $X - AXB = 0$ 415
§18.2. The Sylvester equation $AX - XB = C$ 418
§18.3. $AX = XB$ 421
§18.4. Special classes of solutions 422
§18.5. Riccati equations 424
§18.6. Two lemmas 430
§18.7. An LQR problem 432
§18.8. Bibliographical notes 434

Chapter 19. Realization theory 435
§19.1. Minimal realizations 442
§19.2. Stabilizable and detectable realizations 449
§19.3. Reproducing kernel Hilbert spaces 450
§19.4. de Branges spaces 453
§19.5. R_α invariance 455
§19.6. A left tangential Nevanlinna-Pick interpolation problem 456
§19.7. Factorization of $\Theta(\lambda)$ 462
§19.8. Bibliographical notes 465

Chapter 20. Eigenvalue location problems 467
§22.14. The Heinz inequality 530
§22.15. Extreme points for polyhedra 532
§22.16. Bibliographical notes 536

Chapter 23. Matrices with nonnegative entries 537
§23.1. Perron-Frobenius theory 538
§23.2. Stochastic matrices 544
§23.3. Behind Google 545
§23.4. Doubly stochastic matrices 546
§23.5. An inequality of Ky Fan 550
§23.6. The Schur-Horn convexity theorem 552
§23.7. Bibliographical notes 558

Appendix A. Some facts from analysis 559
§A.1. Convergence of sequences of points 559
§A.2. Convergence of sequences of functions 560
§A.3. Convergence of sums 560
§A.4. Sups and infs 561
§A.5. Topology 562
§A.6. Compact sets 562
§A.7. Normed linear spaces 562

Appendix B. More complex variables 565
§B.1. Power series 565
§B.2. Isolated zeros 567
§B.3. The maximum modulus principle 569
§B.4. \(\ln(1 - \lambda) \) when \(|\lambda| < 1 \) 569
§B.5. Rouché’s theorem 570
§B.6. Liouville’s theorem 572
§B.7. Laurent expansions 572
§B.8. Partial fraction expansions 573

Bibliography 575
Notation Index 579
Subject Index 581