Contents

Preface xiii

Introduction xv

Lecture 1. Basic Notions 1
 §1. Algebraic sets 1
 §2. Krull dimension of a ring 3
 §3. Dimension of an algebraic set 6
 §4. An extended example 9
 §5. Tangent spaces and regular rings 10
 §6. Dimension of a module 12

Lecture 2. Cohomology 15
 §1. Sheaves 16
 §2. Čech cohomology 18
 §3. Calculus versus topology 23
 §4. Čech cohomology and derived functors 26

Lecture 3. Resolutions and Derived Functors 29
 §1. Free, projective, and flat modules 29
 §2. Complexes 32
 §3. Resolutions 34
 §4. Derived functors 36

Lecture 4. Limits 41
 §1. An example from topology 41
§2. Direct limits 42
§3. The category of diagrams 44
§4. Exactness 45
§5. Diagrams over diagrams 48
§6. Filtered posets 49
§7. Diagrams over the pushout poset 52
§8. Inverse limits 53

Lecture 5. Gradings, Filtrations, and Gröbner Bases 55
§1. Filtrations and associated graded rings 55
§2. Hilbert polynomials 57
§3. Monomial orders and initial forms 59
§4. Weight vectors and flat families 61
§5. Buchberger’s algorithm 62
§6. Gröbner bases and syzygies 65

Lecture 6. Complexes from a Sequence of Ring Elements 67
§1. The Koszul complex 67
§2. Regular sequences and depth: a first look 69
§3. Back to the Koszul complex 70
§4. The Čech complex 73

Lecture 7. Local Cohomology 77
§1. The torsion functor 77
§2. Direct limit of Ext modules 80
§3. Direct limit of Koszul cohomology 81
§4. Return of the Čech complex 84

Lecture 8. Auslander-Buchsbaum Formula and Global Dimension 87
§1. Regular sequences and depth redux 87
§2. Global dimension 89
§3. Auslander-Buchsbaum formula 91
§4. Regular local rings 92
§5. Complete local rings 96

Lecture 9. Depth and Cohomological Dimension 97
§1. Depth 97
§2. Cohomological dimension 100
§3. Arithmetic rank 101

Lecture 10. Cohen-Macaulay Rings 105
§1. Noether normalization 106
§2. Intersection multiplicities 108
§3. Invariant theory 110
§4. Local cohomology 115

Lecture 11. Gorenstein Rings 117
§1. Bass numbers 118
§2. Recognizing Gorenstein rings 120
§3. Injective resolutions of Gorenstein rings 123
§4. Local duality 123
§5. Canonical modules 126

Lecture 12. Connections with Sheaf Cohomology 131
§1. Sheaf theory 131
§2. Flasque sheaves 137
§3. Local cohomology and sheaf cohomology 139

Lecture 13. Projective Varieties 141
§1. Graded local cohomology 141
§2. Sheaves on projective varieties 142
§3. Global sections and cohomology 144

Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem 147

Lecture 15. Connectedness 153
§1. Mayer-Vietoris sequence 153
§2. Punctured spectra 154

Lecture 16. Polyhedral Applications 159
§1. Polytopes and faces 159
§2. Upper bound theorem 161
§3. The h-vector of a simplicial complex 163
§4. Stanley-Reisner rings 164
§5. Local cohomology of Stanley-Reisner rings 166
§6. Proof of the upper bound theorem 168

Lecture 17. D-modules 171
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Local Duality Revisited</td>
<td>179</td>
</tr>
<tr>
<td>§1.</td>
<td>Poincaré duality</td>
<td>179</td>
</tr>
<tr>
<td>§2.</td>
<td>Grothendieck duality</td>
<td>180</td>
</tr>
<tr>
<td>§3.</td>
<td>Local duality</td>
<td>181</td>
</tr>
<tr>
<td>§4.</td>
<td>Global canonical modules</td>
<td>183</td>
</tr>
<tr>
<td>19.</td>
<td>De Rham Cohomology</td>
<td>191</td>
</tr>
<tr>
<td>§1.</td>
<td>The real case: de Rham’s theorem</td>
<td>192</td>
</tr>
<tr>
<td>§2.</td>
<td>Complex manifolds</td>
<td>195</td>
</tr>
<tr>
<td>§3.</td>
<td>The algebraic case</td>
<td>198</td>
</tr>
<tr>
<td>§4.</td>
<td>Local and de Rham cohomology</td>
<td>200</td>
</tr>
<tr>
<td>20.</td>
<td>Local Cohomology over Semigroup Rings</td>
<td>203</td>
</tr>
<tr>
<td>§1.</td>
<td>Semigroup rings</td>
<td>203</td>
</tr>
<tr>
<td>§2.</td>
<td>Cones from semigroups</td>
<td>205</td>
</tr>
<tr>
<td>§3.</td>
<td>Maximal support: the Ishida complex</td>
<td>207</td>
</tr>
<tr>
<td>§4.</td>
<td>Monomial support: \mathbb{Z}^d-graded injectives</td>
<td>211</td>
</tr>
<tr>
<td>§5.</td>
<td>Hartshorne’s example</td>
<td>213</td>
</tr>
<tr>
<td>21.</td>
<td>The Frobenius Endomorphism</td>
<td>217</td>
</tr>
<tr>
<td>§1.</td>
<td>Homological properties</td>
<td>217</td>
</tr>
<tr>
<td>§2.</td>
<td>Frobenius action on local cohomology modules</td>
<td>221</td>
</tr>
<tr>
<td>§3.</td>
<td>A vanishing theorem</td>
<td>225</td>
</tr>
<tr>
<td>22.</td>
<td>Curious Examples</td>
<td>229</td>
</tr>
<tr>
<td>§1.</td>
<td>Dependence on characteristic</td>
<td>229</td>
</tr>
<tr>
<td>§2.</td>
<td>Associated primes of local cohomology modules</td>
<td>233</td>
</tr>
<tr>
<td>23.</td>
<td>Algorithmic Aspects of Local Cohomology</td>
<td>239</td>
</tr>
<tr>
<td>§1.</td>
<td>Holonomicity of localization</td>
<td>239</td>
</tr>
<tr>
<td>§2.</td>
<td>Local cohomology as a D-module</td>
<td>241</td>
</tr>
<tr>
<td>§3.</td>
<td>Bernstein-Sato polynomials</td>
<td>242</td>
</tr>
<tr>
<td>§4.</td>
<td>Computing with the Frobenius morphism</td>
<td>246</td>
</tr>
<tr>
<td>24.</td>
<td>Holonomic Rank and Hypergeometric Systems</td>
<td>247</td>
</tr>
</tbody>
</table>
Contents

§1. GKZ A-hypergeometric systems 247
§2. Rank vs. volume 250
§3. Euler-Koszul homology 251
§4. Holonomic families 254

Appendix. Injective Modules and Matlis Duality 257
§1. Essential extensions 257
§2. Noetherian rings 260
§3. Artinian rings 263
§4. Matlis duality 265

Bibliography 269

Index 277