488 Bibliography 205. J.-P. Serre, Cohomologie des groupes discrets, Seminaire Bourbaki 399 (1970/71). 206. , Cohomologie des groupes discrets, Ann. of Math. Studies 70 (1971), 77-169, Princeton University Press. 207. P. Shanahan, The Atiyah-Singer index theorem, Lecture Notes in Mathematics, vol. 638, Springer-Verlag, Berlin, 1978. 208. U. Shukla, A cohomology for Lie algebras, J. Math. Soc. Japan 18 (1966), 275-289. 209. R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. Math. 134 (1991), 375-422. 210. J. Slovak, Peetre theorem for nonlinear operators, Annals of Global Analysis and Geometry 6 (1988), 273-283. 211. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57-64. 212. J.M. Souriau, Quantification geometrique, Comm. Math. Phys. 1 (1966), 374-398. 213. P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. 29 (1974), 699-713. 214. R. Stocker and H. Zieschang, Algebraische Topologie, Teubner, Stuttgart, 1988. 215. J. Szenthe, A generalization of the Weyl group, Acta Math. Hungarica 41 (1983), 347-357. 216. , Orthogonally transversal submanifolds and the generalizations of the Weyl group, Period. Math. Hungarica 15 (1984), 281-299. 217. C.L. Terng, Natural vector bundles and natural differential operators, American J. of Math. 100 (1978), 775-828. 218. , A convexity theorem for isoparametric submanifolds, Invent. Math. 85 (1986), 487-492. 219. , Isoparametric submanifolds and their Coxeter groups, J. Diff. Geom. 1985 (21), 79-107. 220. J.C. Tougeron, Ideaux de fonctions differentiates, Springer-Verlag, 1972, Ergebnisse d. Math. 71. 221. W.M. Tulczyjew, The graded Lie algebra of multivect or fields and the generalized Lie derivative of forms, Bull. Acad. Polon. Sci. 22, 9 (1974), 937-942. 222. I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Mathematics, vol. 118, Birkhauser Verlag, Basel, 1994. 223. V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Springer-Verlag, Englewood Cliffs, N.J., New York, 1974 1984, 2nd edition. 224. A. Weil, Theorie des points proches sur les varietes differentielles, Colloque de topolo- gie et geometrie differentielle (Strasbourg), 1953, pp. 111-117. 225. A. Weinstein, A universal phase space for particles in a Yang-Mills field, Lett. Math. Phys. 2 (1978), 417-420. 226. H. Whitney, Analytic extensions of differentiate functions defined in closed sets, Trans. AMS 36 (1934), 63-89. 227. , Differentiable even functions, Duke Math. J. 10 (1943), 159-166. 228. , The selfintersections of a smooth n-manifold in 2n-space, Annals of Math. 45 (1944), 220-293. 229. S. Wong, Field and particle equations for the classical Yang-Mills field and particles with isotopic spin, II Nuovo Cimento 65A (1970), 689-694. 230. H. Yamabe, On an arcwise connected subgroup of a Lie group, Osaka Math. J. 2 (1950), 13-14.
Previous Page Next Page