Xll
Contents
§10.1. Functors on Category O 208
§10.2. Tensoring With a Dominant Verma Module 210
§10.3. Proof of the Theorem 211
§10.4. Module Categories 212
§10.5. Projective Functors 213
§10.6. Annihilator of a Verma Module 215
§10.7. Comparison of Horn Spaces 216
§10.8. Classification Theorem 218
§10.9. Harish-Chandra Modules 219
§10.10. Principal Series Modules and Category O 221
Notes 222
Chapter 11. Tilting Modules 223
§11.1. Tilting Modules 224
§11.2. Indecomposable Tilting Modules 225
§11.3. Translation Functors and Tilting Modules 227
§11.4. Grothendieck Groups 229
§11.5. Subgroups of K 230
§11.6. Fusion Rules 231
§11.7. Formal Characters 232
§11.8. The Parabolic Case 234
Chapter 12. Twisting and Completion Functors 235
§12.1. Shuffling Functors 236
§12.2. Shuffled Verma Modules 237
§12.3. Families of Twisted Verma Modules 239
§12.4. Uniqueness of a Family of Twisted Verma Modules 240
§12.5. Existence of Twisted Verma Modules 242
§12.6, Twisting Functors 242
§12.7. Arkhipov's Construction of Twisting Functors 243
§12.8. Twisted Versions of Standard Filtrations 244
§12.9. Complete Modules 245
§12.10. Enright's Completions 247
§12.11. Completion Functors 248
§12.12. Comparison of Functors 249
Chapter 13. Complements 251
Previous Page Next Page