Abel, N. H., vii
and elliptic functions, 4, 16
and genus, 5, 8
constraints on existence
for elliptic functions, 15
paper on Abel’s theorem, 6
theorem of, 2, 5, 41, 138
Dedekind-Weber version, 123, 125, 138
Abelian differential, 121, 122
Abelian integral, 41, 43
Acta Mathematica, 20
algebraic curve
and calculus, 2
as covering of the sphere, 8
as Riemann surface, 6, 12, 14, 28
functions on, 14
genus of, 6
integral of, 12
parameterization, 20
with no rational parameterization, 29
algebraic function, 1, 2, 41
field, 27, 42, 45
basis, 47
degree of, 46
integral, 32
norm, 32, 48
of bounded degree, 14
over algebraic numbers, 42
algebraic integer, 24
Dedekind definition, 25
norm of, 25
algebraic numbers, 24, 41
and ideal theory, 1
arithmetic, 37
automorphic function, 20
base locus, 107
basis
complementary, 75, 76, 123, 124
for ring of integral algebraic functions, 54
modulo a module, 60
normal, 110, 112, 124
of algebraic function field, 47
of integral algebraic functions, 53
of module, 55
of polygon class, 109
of polynomials, 77
of vector space, 59
of polygons, 107
Bernoulli, Jakob, 3
and lemniscatic integral, 3, 4
nonrational curve, 29
Bernoulli, Johann, 3
birational equivalence, 17, 29
and isomorphic function fields, 29, 31
of algebraic curves, 29
of curves of genus 1, 31
of sphere with any genus 0 surface, 29
birational geometry, 6
birational transformation, 89
Birkhoff, G.D., 110
Bolyai, J., 18
branch point, 7, see also ramification point
branching, 7, see also ramification
canonical class, 15, 123, 126, 127
is proper, 127, 130
Cauchy, A.-L., 6
and meromorphic functions, 14
and Liouville’s theorem, 13
integral formula, 12
integral theorem, 12
residue theorem, 12
theory of integration, 12
chain rule, 114
characteristic polynomial, 60
Chevalier, A., 6
class
canonical, 126
polygon, 105
principal, 123, 126, 127
Clebsch, R. F. A., 8, 41
compactness, 14, 33
simplifies meromorphic functions, 14
complementary
basis, 75, 76, 123, 124
module, 75, 80, 117, 124, 138
complete system of remainders, 59, 60
INDEX

congruence
 in the sense of geometry, 18
 modulo a module, 58, 59
 modulo an ideal, 66
conjugate
 and norm, 100
 function, 100
 of algebraic integer, 25
 of algebraic number, 100
 of Gaussian integer, 26
 points, 99, 100
 values, 101
 and discriminant, 103
 and norm, 101
curve
 algebraic, 2
 closed, 9
 complex, 6
 cubic, 31
 elliptic, 6
 nonrational, 29
 rational, 6
cyclotomic integers, 24, 35
Dedekind rings, 41
Dedekind, J. W. R., vii, 1, 7
 editions of Dirichlet, 35
 explained ideal numbers, 23
 theory of algebraic integers, 24, 41
 theory of ideals, 1, 24
degree
 and sheet number, 118
 of a field, 99
 of algebraic curve, 14
 of algebraic function, 45
 of algebraic function field, 45, 46
 of discriminant, 81, 100, 101
 of function field
 over \(\mathbb{C}(x) \), 28
 of ideal, 66
 of number field, 25
 of prime ideal, 70, 74
 determinant shorthand, 47
differential, 114, 115
 Abelian, 121, 122
 improper, 121, 122
 in a field, 122
 invariant definition, 122
 logarithmic, 138
 of first kind, 42, 123, 135
 of second kind, 42, 135, 139
 of third kind, 42, 135
 proper, 121, 122
 is not of first kind, 139
 quotient, 42
differential quotient, 42, 113
 and order numbers, 118
 improper, 122
of first kind, 124
 proper, 122
 when continuity is absent, 113
 with respect to \(z \), 122
differentiation rules, 116
dimension, 15
 and Riemann-Roch theorem, 127, 129
 of class of complete polygons, 125
 of polygon class, 109
 of proper class, 129
 of supplementary class, 126, 127
 of vector space, 59
 of differentials of first kind, 125
 of polygons, 107
Dirichlet principle, 12
 and physical intuition, 14
 and Riemann mapping theorem, 14
 avoided by Dedekind and Weber, 15
 saved by Hilbert, 16
 Weierstrass counterexample, 15
Dirichlet, P. G. L., 12
 Vorlesungen, 24
discriminant, 47, 48
 and conjugate values, 103
 and ramification, 81
 and ramification number, 81, 100, 101
 as a norm, 81
 classical concept, 81
 fundamental theorem, 48, 51
 of a function field, 52, 55
 of algebraic functions, 50
 of the ring of integral algebraic functions, 55
divisibility, 21
 in Euclid’s Elements, 21
 in \(\mathbb{Z}[i] \), 21
 laws for ideals, 70
 of divisors, 34
 of function by ideal, 68
 of ideal by prime ideal, 69
 of ideals, 26
 of integral algebraic functions, 53
 of modules, 55, 57
 of polygon classes, 106
division algorithm, 21
divisor
 called “polygon”, 34
 concept of Kronecker, 27
 effective, 34
 greatest common, 21, 23, 42, 57
 ideal, 42
 meaning substructure, 50
 of a module, 57
 of a vector space, 107
 on a Riemann surface, 20, 33
 positive, 34
 principal, 33
 strict, 57
INDEX

double periodicity
discovered by Gauss, 5
explained by Riemann, 5
of elliptic functions, 5
double point
ideal, 117
polygon, 121
Eichler, M., 36
Eisenstein, G., 16, 20
elementary function, 2
elliptic
curve, 6
 as Riemann surface, 9
 as torus, 9
parameterization, 17
function, 4
constrained on existence, 15
double periodicity, 4, 16
Eisenstein formula, 16
lemniscatic, 4
Weierstrass formula, 17
integral, 6
kinds of, 123
equivalence
birational, 17, 29
linear, 105
modulo lattice, 17
of polygons, 105
projective, 31
topological, 9
Euclid, 21
parameterized Pythagorean triples, 29
prime divisor property, 70
Euclidean algorithm, 21
for polynomials, 28
in \(\mathbb{Z}[\sqrt{-2}] \), 22
in \(\mathbb{Z}[i] \), 22
Euler, L., vii, 3
addition formula, 3
characteristic, 11
solution of \(y^3 = x^2 + 2 \), 21
exponent, 111
expressions for functions, 12, 15
Fagnano, G., 3
doubling formula, 3
Fermat, P.
last theorem, 24
letter from Pascal, 35
theorem about \(y^3 = x^2 + 2 \), 21
theorem that \(X^4 - Y^4 \neq Z^2 \), 4, 30
field, 1, 15
algebraic function, 45
of algebraic functions, 1, 42
of algebraic numbers, 25
of genus zero, 132
consists of rational functions, 133
has no improper classes, 132
of meromorphic functions
 on a Riemann surface, 28
 on the sphere, 28
 of rational functions, 27
 on a curve, 28
Fuchsian function, 20
function
 algebraic, 1, 2, 14, 41, 45
 integral of, 5
 automorphic, 20
 conjugate, 100
 defined by discontinuities, 12
doubly-periodic, 16
elementary, 2
elliptic, 4
 constraints on existence, 15
Fuchsian, 20
holomorphic, 12
integral algebraic, 42, 51
meromorphic, 13
multi-valued, 7, 16
of first kind, 127
of second kind, 127
on Riemann surface, 12
polynomial, 46
rational, 2, 13, 41, 133
square root, 3
triangle, 18
function field, 25, 27
as extension of \(C(x) \), 27
compared with number field, 27, 28
isomorphism and birational equivalence, 29
not isomorphic to \(C(x) \), 30
of curve \(x^2 + y^2 = 1 \), 29
of curve \(y^2 = 1 - x^4 \), 30
of Riemann surface, 28
rational, 27
fundamental theorem
 of algebra, 2
 and integrals, 3
gives prime polynomials, 28
of arithmetic, 21
on complete polygons, 125
on discriminants, 51
Galois, E., 6
theorem of primitive element, 25
Gauss, C. F.
 and lemniscatic sine, 4
 and rational algebraic integers, 25
 and unique prime factorization, 21
 Disquisitiones, 52
 lemma, 52
theory of Gaussian integers, 21
theory of quadratic forms, 23
Gaussian integer, 21
conjugate, 26
norm of, 26
unique prime factorization, 22

genus, 16
algebraic definition, 42
and connectivity, 8
and Euler characteristic, 11
and ramification, 11
and ramification number, 111
and surface topology, 8
as number of “holes”, 9

Dedekind-Weber definition, 11, 118, 119
in Abel’s theorem, 5, 8
interpreted by Riemann, 6
named by Clebsch, 8, 41
of field, 118, 119, 132
of sphere, 9
of torus, 9
geometry
birational, 6
Euclidean, 20
non-Euclidean, 18
greatest common divisor, 42, 55
in Euclid’s Elements, 21
in \(\mathbb{Z}[\sqrt{-5}] \), 23
of a vector space of polygons, 107
of ideals, 67
of modules, 57
 and congruence, 61
of polygons, 99
of principal ideals, 72
Grothendieck, A., 110

Hasse, H., 110
Hensel, K., 20, 34, 110
 and \(p \)-adic numbers, 35
Hilbert, D., 16
holomorphic function, 12
Hurwitz, A., 10
hydrodynamics, 12
ideal, 24, 42
 as greatest common divisor
 of principal ideals, 72
calculation with, 42
decomposition of, 42
degree of, 66
divisibility, 26
generated by a polygon, 99
greatest common divisor, 67
in number field, 26
laws of divisibility, 70
least common multiple, 67
lower, 87
maximal, 32
nonprincipal, 26
norm, 66
 multiplicative property, 74
null polygon for, 99
of double points, 117
of integral algebraic functions, 65
of number field, 1
prime, 24, 32, 42, 67, 68
degree is 1, 74
divisibility by, 69
divisor property, 69
null point, 95
unique factorization, 67, 73
principal, 26, 65, 66
as multiple of ideal, 72
divisibility, 68
product, 26, 67
ramification, 7, 81, 100
definition of, 83
upper, 87
ideal number, 23, 41
and valuation, 35
multiples of, 23
improper
differential, 121, 122
differential quotient, 122
improper differential, 121
infinity, 94
rules of calculation, 94
integer
Gaussian, 21
of number field, 1
of rational function field, 27
integral
Abelian, 43
basis, 52
elliptic, 6
types of, 123
inverse sine, 3
 addition formula, 4
 rationalized, 4
lemniscatic, 3
 addition formula, 3
cannot be rationalized, 4
of algebraic function, 5
on algebraic curve, 12
integral algebraic function, 42, 51
and complementary basis, 78
norm is polynomial, 52
of a field, 51
trace is polynomial, 52
integral calculus, 2
integral closure, 32
Jacobi, C. G. J.
and elliptic functions, 4, 16
expressions for elliptic functions, 15
influenced Kummer, 23
letter to Legendre, 6
on Abel’s theorem, 2
Kürschak, J., 34
Klein, F.
championed Riemann’s methods, 37
INDEX

on Riemann’s theory, 16
Koebe, P., 20
Kronecker, L., 36, 42
advocated arithmetization, 37
delta, 36
divisor concept, 27
opinion of Poincaré papers, 20
Kummer, E. E., 23, 41
ideal numbers, 23, 35, 41
influenced by Jacobi, 23
recovered unique prime factorization, 23
Landsberg, G., 20, 110
lattice, 17
equivalence, 17
quotient of \(\mathbb{C} \) by, 17
least common multiple
of ideals, 67
of modules, 55, 57
and congruence, 61
of polygongs, 99
of principal ideals, 86
Legendre, A.-M., 2, 6, 123
Leibniz, G. W., 2
lemniscate, 3
lemniscatic
integral, 3
addition formula, 3
cannot be rationalized, 4
doubling formula, 3
sine function, 4
periodicity, 5
linear equivalence, 105
linear independence
modulo a module, 60
of functions, 59
of polygongs, 107
linear system, 105, 109
linear transformation, 89, 92, 100, 120
Liouville, J., 13
theorem, 13
Lobachevsky, N. I., 18
logarithmic differential, 138
Lüroth’s theorem, 31
Lüroth, J., 31
manifolds, 16
meromorphic function, 13
constraints on existence, 14
determined by zeros and poles, 13
field, 28
on algebraic curve, 14
on \(\mathbb{C} \), 14
on surface of genus \(>1 \), 18
on the disk, 20
on the sphere, 13
on the torus, 17
periodic on disk, 19
Riemann’s interpretation, 16
with non-Euclidean periodicity, 20
Mittag-Leffler, M. G., 20
Möbius, A. F., 9
module, 55
basis of, 55
complementary, 75, 80, 117, 124, 138
and ramification, 75, 84
finitely generated, 55
product, 55, 58
multiple
least common, 57
of a module, 57
of ideal, 72
of ideal number, 23
multiplicity, 13, see also order
Neumann, C.
and Riemann sphere, 8
branch point picture, 7
Noether, E., 41
non-Euclidean
geometry, 18
octagon, 19
periodicity, 18
norm, 47
as product of conjugates, 101
multiplicative property, 26, 47, 49
of algebraic function, 32, 47, 48
of algebraic integer, 25
of algebraic number, 47
of Gaussian integer, 26
of ideal, 66
multiplicative property, 74
of integral algebraic function, 52
of rational function, 49
relative
multiplicative property, 61
of modules, 60
normal basis, 110, 112, 124
null point, 95
null polygon
of an ideal, 99
null-gon, 98
number
algebraic, 41, 45
ideal, 41
p-adic, 35
rational, 41
number field, 25
as extension of \(\mathbb{Q} \), 27
degree, 25
integers of, 25
of finite degree, 25
order
in a number field, 27
of a function, 99
of a point, 33
of a pole, 13
of a pole or zero, 33
of a polygon, 98
of a variable, 99
of a zero, 13
of polygon equivalence class, 105
order number, 34, 96, 103
is additive, 98
of differential quotient, 118
of finite value, 98
of infinity, 98
of zero, 97

℘-function, 17
parameterization
by automorphic functions, 20
by elliptic functions, 20
by rational functions, 20, 31
of algebraic curves, 20
of circle
by rational functions, 29
of elliptic curve, 17
of Pythagorean triples, 29
Pascal, B., 35
period
of Abelian integral, 41, 43
of elliptic function, 9
periodicity, 4
double, 16
non-Euclidean, 18
of meromorphic function, 20
of elliptic functions, 4
of lemniscatic sine, 5
Poincaré, J. H., 18
and non-Euclidean geometry, 18
assumed uniformization, 20
automorphic functions, 20
championed Riemann’s methods, 37
Fuchsian functions, 20
proved uniformization theorem, 20
point
as coexistence of values, 93, 94
at infinity, 8, 93
simplifying effect of, 14
conjugate, 99, 100
generates prime ideal, 95
uniquely, 95
is an invariant concept, 94
of polygon
plays role of prime factor, 98
of ramification, 7
of Riemann surface, 31, 42, 93
lies over a point of the sphere, 32
ramification, 7, 100
pole, 13
order of, 13
origin of term, 16
polygon, 1, 27, 34, 93, 97, 98
as effective divisor, 34
class, 105
basis, 109
canonical, 123
dimension, 109, 125
divisibility, 106
improper, 110, 130, 131
of first kind, 126
of second kind, 126
order of, 105
principal, 127, 130
product, 105
proper, 109, 110, 139
supplementary, 126, 127, 129, 130
complete, 123
of first kind, 124
equivalence, 105
fundamental, 123
generates an ideal, 99
greatest common divisor, 99
isolated, 105
laws of divisibility, 97, 98
least common multiple, 99
linear independence, 107
lower, 103, 104
of double points, 121
of first kind, 123, 124
of second kind, 123, 124
order of, 98
points
play role of prime factors, 98
quotient, 97, 103
ramification, 100
supplementary, 75, 123, 124
upper, 103, 104
polygon class
canonical, 123, 127
divisibility, 106
principal, 123, 126
product, 105
polynomial, 46
as integer of rational function field, 27
basis functions, 77
divisible by prime ideal, 75
equation
relating members of a field, 92
prime
divisor property, 70
ideal, 24, 32, 68
divisibility by, 69
divisor property, 69
is first degree, 74
unique factorization, 73
of number field, 1, 27
polynomials, 28
prime ideal
collection of Riemann surface, 96
generated by point, 93, 95
null point, 95
unique generation by point, 95
primitive element, 25
principal class, 123, 126, 127
now known as canonical class, 123
principal divisor, 33
product
of ideals, 26, 67
of modules, 55, 58
of polygon classes, 105
proper
differential, 121, 122
differential quotient, 122
polygon class, 109, 110
quotient
differential, 113
of ideals, 73, 86
of integral algebraic functions, 86
of modules, 58
of polygons, 103
quotient surface, 17
non-Euclidean, 18
ramification
and complementary modules, 75, 84
and discriminant, 81
and genus, 11, 81
ideal, 7, 81, 100
definition of, 83
norm of, 81
number, 100
and discriminant, 100, 101
and genus, 111, 118
is even, 111, 113
point, 7, 10, 81, 100
Neumann’s picture, 7
polygon, 100
rational function, 2, 13, 41
decomposition, 41
field, 27, 133
integral of, 2
norm, 49
on a curve, 28
on a Riemann surface, 28
on the circle, 29
rational number, 41
rational transformation, 89
relatively prime
ideals, 68
numbers, 21
residue, 13
of a differential, 135
of second kind, 138
of third kind, 138
of a proper differential
is zero, 135
sum is zero, 136
theorem, 12, 75, 135
Riemann sphere, 8
point at \(\infty\), 33
Riemann surface, 6
analysis on, 16
and Euler characteristic, 11
and periodicity, 16
as covering of the sphere, 8
as quotient of the disk, 18
branching of, 7
closure at infinity, 94
compactness, 14
construction from prime ideals, 93, 96
Dedekind-Weber concept of, 28, 41, 42, 93
defined by functions on it, 28
defined by Weyl, 16
defined via points, 31
definition of a point, 31, 94
divisor on, 33
for the function field \(C(x)\), 28
functions on, 12
genus of, 8, 118
is generally non-Euclidean, 20
of curve \(x^2 + y^2 = 1\), 29
of genus 0, 14
of genus 1, 9, 30
of simple and ramification points, 100
point of, 42, 93
points at \(\infty\), 93
ramification points of, 7, 10, 81, 100
Riemann’s conception of, 10, 100
sheets of, 7, 32, 97
and ramification points, 10, 100
simply connected, 20
topology of, 9
view of algebraic curve, 14
Riemann, G. F. B., vii
added point at infinity, 8
and algebraic curves, 6
and genus, 8, 41
assumed Dirichlet principle, 12, 14, 20
closed surfaces by point at infinity, 94
collected works, 1
conception of Riemann surface, 10, 100
existence theorem, 15
generalized Cauchy’s integration theory, 12
inequality, 15
interpretation of genus, 6
mapping theorem, 14
sphere, 8
surface, 6
theorem on meromorphic functions, 14
theory of algebraic functions, 41
Riemann-Hurwitz formula, 10, 118
Riemann-Roch theorem, 2, 41, 42
and canonical class, 15, 123, 127
and number theory, 20
and supplementary classes, 127
as algebra, 15
for improper classes
 of first kind, 130
 of second kind, 131
for proper classes, 127
ring
 Dedekind, 41
 of algebraic integers, 25
 of integral algebraic functions, 52
Roch, G., 2, 15, 123
Salmon, G., 31
Schaar, 15, 37
Schwarz, H. A., 18
triangle function, 18
simply connected, 9, 12, 20
stereographic projection, 8
Stevin, S., 28
strict divisor, 57
supplementary
 polygon, 75, 123, 124
 polygon class, 126, 127, 129, 130
 dimension of, 126, 127
Taylor series, 13, 86, 114
theorem
 Abel’s, 2, 41, 138
 Dedekind-Weber version, 125, 138
 statement, 5
 Cauchy’s, 12
 Fermat’s last, 24
 Liouville’s, 13
 Lioth’s, 31
residue, 12, 75, 135
Riemann mapping, 14
Riemann-Roch, 2, 15, 41, 42, 127
uniformization, 20
torus, 9
 as quotient surface, 17
 meromorphic functions on, 17
 paths on, 9
 relationship with plane, 18
trace, 47
 of an algebraic function, 49
 of integral algebraic function, 52
transformation
 birational, 89
 linear, 89, 92, 100, 120
 rational, 89
uniformization theorem, 20
 proved by Poincaré and Koebe, 20
 statement, 20
unique prime factorization, 21
 and ideal numbers, 23
 fails for \(\mathbb{Z}[\sqrt{-5}] \), 23
 fails in ring of all algebraic integers, 25
 for ideals, 67
 for polynomials, 28
valuation
 and ideal numbers, 35
 discrete, 34, 96
 \(p \)-adic, 35
 theory, 34
variable, 89
vector space, 15
 basis of, 59
 dimension of, 59
 duality, 75
 of congruence classes, 59
 of differentials, 123
 of first kind, 125
 of functions, 59
 of polygons, 106
 divisor of, 107
 properties, 15, 37
Weber, H. M., vii, 1, 7, 35
Algebra, 36, 86
Weierstrass, K. T. W., 42
 and arithmetization of analysis, 37
 counterexample to Dirichlet’s principle, 15
 \(\wp \)-function, 17
Weyl, H., 12
 defined Riemann surfaces, 16
 theory of Riemann surfaces, 20
winding, 100, see also ramification
zero, 13
 order of, 13