Contents

Preface vii

Publisher’s Note ix

Chapter I. Measure Theory 1
 1. Topology 1
 2. Measure 3
 3. Measurability 5
 4. Connection between λ and ν 9

Chapter II. Generalized limits 11
 5. Topology 11
 6. Ideals 13
 7. Independence 14
 8. Commutativity 15
 9. Limit functions 18
 10. Uniqueness 20
 11. Convergence 24
 12. Numerical limits 27

Chapter III. Haar measure 33
 13. Remarks on measures 33
 14. Preliminary considerations about groups 34
 15. The existence of Haar measure 37
 16. Connection between topology and measure 40

Chapter IV. Uniqueness 47
 17. Set theory 47
 18. Regularity 50
 19. Fubini’s theorem 55
 20. Uniqueness of Haar measure 60
 21. Consequences 66

Chapter V. Measure and topology 71
 22. Preliminary remarks 71
 23. Hilbert space 73
 24. Characterizations of the topology 77
 25. Characterizations of the notion of compactness 81
 26. The density theorem 83
Chapter VI. Construction of Haar’s invariant measure in groups by approximately equidistributed finite point sets and explicit evaluations of approximations

1. Notations (combinatorics and set theory) 87
2. Lemma of Hall, Maak and Kakutani 87
3. Notations (topology and group theory) 92
4. Equidistribution 92
5. First example of equidistribution 94
6. Second example of equidistribution 95
7. Equidistribution (concluded) 98
8. Continuous functions 98
9. Means 100
10. Left invariance of means 102
11. Means and measures 103
12. Left invariance of measures 110
13. Means and measures (concluded) 113
14. Convergent systems of a.l.i. means 115
15. Examples of means 117
16. Examples of means (concluded) 119
17. 2-variable means 120
18. Comparison of two O-a.l.i. means 121
19. Comparison of two O-a.l.i. means (concluded) 130
20. The convergence theorem 133
Preface

In 1940–1941 von Neumann lectured on invariant measures at the Institute for Advanced Study. This book is essentially a written version of what he said.

The lectures began with general measure theory and went on to Haar measure and some of its generalizations. Shizuo Kakutani was at the Institute that year, and he and von Neumann had many conversations on the subject. The conversations revealed facts and produced proofs—quite a bit of the content of the course, especially toward the end, was discovered just a week or two or three before it appeared on the blackboard. The original version of these notes was prepared by Paul Halmos, von Neumann’s assistant that year. Von Neumann read the handwritten version before it went to the typist, and sometimes scribbled comments on the margins. On Chapter VI, the last one, he did more than scribble—he himself wrote most of it.

The notes were typed. Two or three copies were kept in the Institute—von Neumann had one and the Institute library had another. Since then a few photocopies have been made, but until now the notes have never been published in any proper sense of the word.