Contents

Preface vii
Pedagogical Aims ix
Humanistic Aims xii
Special Features of This Book xiii
Other Works on the Subject xvi
Background Necessary to Read This Book xvii
Plan of the Work xviii
Acknowledgments xix

Part 1. The Special Theory 1

Chapter 1. Time, Space, and Space-Time 3
1. Simultaneity and Sequentiality 3
2. Synchronization in Newtonian Mechanics 6
4. The Lorentz Transformation 20
5. Contraction of Length and Time 26
6. Composition of Parallel Velocities 30
7. The Twin Paradox 32
8. Relativistic Triangles 35
9. Composition of Relativistic Velocities as a Binary Operation* 39
10. Plane Trigonometry* 45
11. The Lorentz Group* 48
12. Closure of Lorentz Transformations under Composition* 52
13. Rotational Motion and a Non-Euclidean Geometry* 57
14. Problems 64

Chapter 2. Relativistic Mechanics 71
1. The Kinematics of a Particle 71
2. From Kinematics to Dynamics: Mass and Momentum 75
3. Relativistic Force 79
5. Newtonian Potential Energy 87
6. Hamilton’s Principle 92
7. The Newtonian Lagrangian 93
8. The Relativistic Lagrangian 96
9. Angular Momentum and Torque 98
10. Four-Vectors and Tensors* 101
11. Problems 113
Chapter 3. Electromagnetic Theory*
1. Charge and Charge Density 116
2. Current and Current Density 118
3. Transformation of Electric and Magnetic Fields 119
4. Derivation of the Curl Equations from the Divergence Equations 122
5. Problems 124

Part 2. The General Theory 125

Introduction to Part 2 127

Chapter 4. Precession and Deflection 129
1. Gravitation as Curvature of Space 131
2. First Analysis: Newtonian Orbits 132
4. Third Analysis: Newtonian Orbits as Geodesics 140
5. Fourth Analysis: General Relativity 155
7. Computation of the Relativistic Orbit 166
8. The Speed of Light 177
9. Deflection of Light Near the Sun 179
10. Problems 183

Chapter 5. Concepts of Curvature, 1700–1850 189
1. Differential Geometry 190
2. Curvature, Phase 1: Euler 197
3. Curvature, Phase 2: Gauss 212
4. Problems 223

Chapter 6. Concepts of Curvature, 1850–1950 225
1. Second-Order Derivations 226
2. Curvature, Phase 3: Riemann 232
3. Parallel Transport 239
4. The Exponential Mapping and Normal Coordinates 248
5. Sectional Curvature 260
6. The Laplace–Beltrami Operator 264
7. Curvature, Phase 4: Ricci 287
8. Problems 297

Chapter 7. The Geometrization of Gravity 303
1. The Einstein Field Equations 304
2. Further Developments 314
3. “Temporonautics” and the Gödel Rotating Universe 315
4. Black Holes 320
5. Problems 325

Part 3. Historical and Philosophical Context 329

Chapter 8. Experiments, Chronology, Metaphysics 331
1. Experimental Tests of General Relativity 332
CONTENTS

2. Chronology 336
3. Space and Time 350
4. The Reality of Physical Concepts 361
5. The Harmony Between Mathematics and the Physical World 366
6. Knowledge of Hypothetical Objects: An Example 376
7. Knowledge of the Physical World 380
8. A Few Words from the Discoverers 384
9. Epilogue: The Reception of Relativity 386

Bibliography 389

Subject Index 393

Name Index 401