Those Fascinating Numbers 237
109 376
the smallest six digit automorphic number: 109
3762
= 11 963 109 376 (see the
number 76).
109 453
the smallest number n such that P (n) P (n + 1) . . . P (n + 8): here
109453 54727 7297 6841 4759 2027 823 421 107 (see the
number 1 851).
109 989
the fifth number which is not a palindrome, but which divides the number
obtained by reversing its digits (see the number 1 089).
110 487 (= 3 · 13 · 2833)
the 100
000th
composite number (see the number 133).
110 503
the exponent of the
29th
Mersenne prime
2110 503
1 (Colquitt and Welsch,
1988).
110 880
the
25th
superabundant number: we say that n is superabundant if σ(n)/n
σ(m)/m for each number m n; the sequence of numbers satisfying this pro-
perty begins as follows: 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720,
840, 1 260, 1 680, 2 520, 5 040, 10 080, 15 120, 25 200, 27 720, 55 440, 110 880,
166 320, 277 200, 332 640, 554 400, 665 280, 720 720, 1 441 440, . . .
113 343
the smallest number n for which the Moebius function µ takes successively,
starting with n, the values 1,0,1,0,1,0,1,0,1,0,1,0 (see the number 3 647).
114 243
the 12th number n such that n2 −1 is powerful: here 114 2432 −1 = 23 ·134·2392
(see the number 485).
114 688
the 17th Granville number (see the number 126).
Previous Page Next Page