324 Jean-Marie De Koninck
171 078 830 (= 2 · 5 · 13 · 23 · 29 · 1973)
the smallest abundant number n such that n + 1 and n + 2 are also abundant;
the sequence of numbers satisfying this property begins as follows: 171 078 830,
268 005 374, 321 893 648, 336 038 624, 487 389 824, . . .
173 706 136
the
19th
dihedral perfect number (see the number 130).
179 376 463
the smallest number n such that the Liouville function λ0 takes successively,
starting with n, 30 times in a row, the value −1 (see the number 5 879).
179 390 821
the 10 000
000th
prime power, in fact here a prime number (see the number
419).
179 424 673
the 10 000 000th prime number (see the number 541).
182 403 491
the first member p of the second 9-tuple (p, p + 2, p + 6, p + 8, p + 12, p + 18, p +
20, p+26, p+30) made up entirely of prime numbers: the first 9-tuple satisfying
this property is (11,13,17,19,23,29,31,37,41).
184 055 430
the smallest number n such that ω(n) + ω(n + 1) + ω(n + 2) = 18: here
184 055 430 = 2 · 3 · 5 · 13 · 172 · 23 · 71, 184 055 431 = 7 · 29 · 47 · 101 · 191 and
184 055 432 = 23 · 11 · 19 · 31 · 53 · 67 (see the number 2 210).
184 773 312
the fourth number n (and the largest one known) such that σ(n) = 3n + 12;
the three smallest are 780, 2 352 and 430 272.
190 899 322
the
14th
Bell number (see the number 52).
Previous Page Next Page