Those Fascinating Numbers 347
4 931 691 075
the 13th powerful number n such that n+1 is also powerful: here 4 931 691 075 =
35 · 52 · 172 · 532 and 4 931 691 076 = 22 · 132 · 372 · 732 (see the number 288).
5 391 411 025 (= 52 · 7 · 11 · 13 · 17 · 19 · 23 · 29)
the smallest odd abundant number which is not a multiple of 3.
5 394 826 801 (= 7 · 13 · 17 · 23 · 31 · 67 · 73)
the smallest Carmichael number which is the product of seven prime numbers
(see the number 41 041).
5 425 069 447
the 14th powerful number n such that n+1 is also powerful: here 5 425 069 447 =
73 · 412 · 972 and 5 425 069 448 = 23 · 260412 (see the number 288).
5 471 312 310
the smallest number n which allows the sum
i≤n
1
i
to exceed 23 (see the number
83).
5 745 705 602
the smallest number which can be written as the sum of three distinct fourth
powers in eight distinct ways:
5 745 705 602 =
34
+
2304
+
2334
=
254
+
2184
+
2434
=
434
+
2074
+
2504
=
584
+
1974
+
2554
=
854
+
1774
+
2624
=
904
+
1734
+
2634
=
1024
+
1634
+
2654
=
1224
+
1454
+
2674
(see the number 6 578).
6 058 655 748
the smallest number which can be written as the sum of the cubes of two prime
numbers in two distinct ways: 6 058 655 748 = 613 + 18233 = 10493 + 16993;
the sequence of numbers satisfying this property begins as follows: 6058655748,
6507811154, 12906787894, 20593712932, 140253191624, 293833825922, . . . (for
fourth powers, see the number 3 262 811 042)
Previous Page Next Page