Those Fascinating Numbers 373
51 724 158 235 372
the
20th
Bell number (see the number 52).
57 030 382 702 475
possibly the largest number n such that max(P (n), P (n + 1)) 73: here
57 030 382 702 475 =
52
·
74
· 13 ·
292
·
432
· 47,
57 030 382 702 476 =
22
·
37
· 19 ·
312
· 67 ·
732.
60 502 217 031 967
possibly the smallest number n such that β∗(n) = β∗(n + 1) = β∗(n + 2) =
β∗(n + 3) = β∗(n + 4), where β∗(n) = β(n) P (n) =
p|n
pP (n)
p: indeed,
60 502 217 031 967 = 43 · 1407028303069,
60 502 217 031 968 =
25
· 41 · 46114494689,
60 502 217 031 969 = 3 · 17 · 23 · 51579042653,
60 502 217 031 970 = 2 · 5 · 7 · 29 · 29804047799,
60 502 217 031 971 = 11 · 13 · 19 · 22268022463,
so that the common value of β∗(n + i) is 43 (see the number 15 860).
72 301 961 339 136 (=
548)
the second number n 1 whose sum of digits is equal to
8

n (see the number
20 047 612 231 936).
99 999 999 999 973
the largest 14 digit prime number.
100 000 000 000 031
the smallest 15 digit prime number.
103 307 491 450 820 (= 22 · 5 · 31 · 61 · 97 · 28160383)
the 100 000 000 000
000th
composite number (see the number 133).
Previous Page Next Page