Those Fascinating Numbers 387
1 000 000 000 000 000 000 117
the smallest 22 digit prime number.
1 180 591 620 717 411 303 424
the largest known number n of the form n = 2k for which the sum of the digits
is equal to k: here
270
= 1 180 591 620 717 411 303 424; the only other known
number of this type is 32 =
25.
1 357 913 579 135 791 357 913
the second prime number of the form 1357913579135 . . ., that is whose digits
are the odd numbers 1, 3, 5, 7 and 9, repeated: the smallest is 13.
1 791 562 810 662 585 767 521 (= 11·13·17·19·31·37·43·71·73·97·109·113·127)
the smallest Carmichael number which is the product of 13 prime numbers (see
the number 41 041).
1 834 933 472 251 084 800 000
the value of 1! · 2! · . . . · 9!.
2 361 183 241 434 822 606 848 (=
271)
the largest known power of 2 which does not contain the digit 7 in its decimal
expansion (see David Gale [86]; see also the footnote tied to the number 71).
2 677 687 796 244 384 203 115
the
20th
horse number (see the number 13).
3 508 125 906 290 858 798 171
the tenth Hamilton number (see the number 923).
3 551 349 655 007 944 406 147
the smallest prime number of the form n6 + 1 091, here with n = 3 906 (see the
number 3 906).
9 999 999 999 999 999 999 973
the largest 22 digit prime number.
Previous Page Next Page