Contents

Foreword xi
Notation xiii
Acknowledgements xiv

Chapter 1. Elementary Prime Number Theory, I 1
§1. Introduction 1
§2. Euclid and his imitators 2
§3. Coprime integer sequences 3
§4. The Euler-Riemann zeta function 4
§5. Squarefree and smooth numbers 9
§6. Sledgehammers! 12
§7. Prime-producing formulas 13
§8. Euler’s prime-producing polynomial 14
§9. Primes represented by general polynomials 22
§10. Primes and composites in other sequences 29
Notes 32
Exercises 34

Chapter 2. Cyclotomy 45
§1. Introduction 45
§2. An algebraic criterion for constructibility 50
§3. Much ado about \(\mathbb{Z}[\zeta_p] \) 52
§4. Completion of the proof of the Gauss–Wantzel theorem 55
§5. Period polynomials and Kummer’s criterion 57
§6. A cyclotomic proof of quadratic reciprocity 61
§7. Jacobi’s cubic reciprocity law 64
Notes 75
Exercises 77

Chapter 3. Elementary Prime Number Theory, II 85
§1. Introduction 85
§2. The set of prime numbers has density zero 88
§3. Three theorems of Chebyshev 89
§4. The work of Mertens 95
§5. Primes and probability 100
Notes 104
Exercises 107

Chapter 4. Primes in Arithmetic Progressions 119
§1. Introduction 119
§2. Progressions modulo 4 120
§3. The characters of a finite abelian group 123
§4. The L-series at $s = 1$ 127
§5. Nonvanishing of $L(1, \chi)$ for complex χ 128
§6. Nonvanishing of $L(1, \chi)$ for real χ 132
§7. Finishing up 133
§8. Sums of three squares 134
Notes 139
Exercises 141

Chapter 5. Interlude: A Proof of the Hilbert–Waring Theorem 151
§1. Introduction 151
§2. Proof of the Hilbert–Waring theorem (Theorem 5.1) 152
§3. Producing the Hilbert–Dress identities 156
Notes 161

Chapter 6. Sieve Methods 163
§1. Introduction 163
§2. The general sieve problem: Notation and preliminaries 169
§3. The sieve of Eratosthenes–Legendre and its applications 170
§4. Brun’s pure sieve 175
§5. The Brun–Hooley sieve 182
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>§6. An application to the Goldbach problem</td>
<td>196</td>
</tr>
<tr>
<td>Notes</td>
<td>201</td>
</tr>
<tr>
<td>Exercises</td>
<td>202</td>
</tr>
<tr>
<td>Chapter 7. An Elementary Proof of the Prime Number Theorem</td>
<td>213</td>
</tr>
<tr>
<td>§1. Introduction</td>
<td>214</td>
</tr>
<tr>
<td>§2. Chebyshev’s theorems revisited</td>
<td>217</td>
</tr>
<tr>
<td>§3. Proof of Selberg’s fundamental formula</td>
<td>221</td>
</tr>
<tr>
<td>§4. Removing the explicit appearance of primes</td>
<td>224</td>
</tr>
<tr>
<td>§5. Nevanlinna’s finishing strategy</td>
<td>231</td>
</tr>
<tr>
<td>Notes</td>
<td>235</td>
</tr>
<tr>
<td>Exercises</td>
<td>237</td>
</tr>
<tr>
<td>Chapter 8. Perfect Numbers and their Friends</td>
<td>247</td>
</tr>
<tr>
<td>§1. Introduction and overview</td>
<td>248</td>
</tr>
<tr>
<td>§2. Proof of Dickson’s finiteness theorem</td>
<td>253</td>
</tr>
<tr>
<td>§3. How rare are odd perfect numbers?</td>
<td>255</td>
</tr>
<tr>
<td>§4. The distribution function of $\sigma(n)/n$</td>
<td>259</td>
</tr>
<tr>
<td>§5. Sociable numbers</td>
<td>263</td>
</tr>
<tr>
<td>Notes</td>
<td>267</td>
</tr>
<tr>
<td>Exercises</td>
<td>269</td>
</tr>
<tr>
<td>References</td>
<td>279</td>
</tr>
<tr>
<td>Index</td>
<td>301</td>
</tr>
</tbody>
</table>