Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
The Ultimate Challenge: The $3x+1$ Problem
 
Edited by: Jeffrey C. Lagarias University of Michigan, Ann Arbor, MI
Softcover ISBN:  978-1-4704-7289-4
Product Code:  MBK/78.S
List Price: $65.00
MAA Member Price: $58.50
AMS Member Price: $52.00
eBook ISBN:  978-1-4704-1813-7
Product Code:  MBK/78.E
List Price: $62.00
MAA Member Price: $55.80
AMS Member Price: $49.60
Softcover ISBN:  978-1-4704-7289-4
eBook: ISBN:  978-1-4704-1813-7
Product Code:  MBK/78.S.B
List Price: $127.00 $96.00
MAA Member Price: $114.30 $86.40
AMS Member Price: $101.60 $76.80
Click above image for expanded view
The Ultimate Challenge: The $3x+1$ Problem
Edited by: Jeffrey C. Lagarias University of Michigan, Ann Arbor, MI
Softcover ISBN:  978-1-4704-7289-4
Product Code:  MBK/78.S
List Price: $65.00
MAA Member Price: $58.50
AMS Member Price: $52.00
eBook ISBN:  978-1-4704-1813-7
Product Code:  MBK/78.E
List Price: $62.00
MAA Member Price: $55.80
AMS Member Price: $49.60
Softcover ISBN:  978-1-4704-7289-4
eBook ISBN:  978-1-4704-1813-7
Product Code:  MBK/78.S.B
List Price: $127.00 $96.00
MAA Member Price: $114.30 $86.40
AMS Member Price: $101.60 $76.80
  • Book Details
     
     
    2010; 344 pp
    MSC: Primary 11; 37; Secondary 68

    The \(3x+1\) problem, or Collatz problem, concerns the following seemingly innocent arithmetic procedure applied to integers: If an integer \(x\) is odd then “multiply by three and add one”, while if it is even then “divide by two”. The \(3x+1\) problem asks whether, starting from any positive integer, repeating this procedure over and over will eventually reach the number 1. Despite its simple appearance, this problem is unsolved. Generalizations of the problem are known to be undecidable, and the problem itself is believed to be extraordinarily difficult.

    This book reports on what is known on this problem. It consists of a collection of papers, which can be read independently of each other. The book begins with two introductory papers, one giving an overview and current status, and the second giving history and basic results on the problem. These are followed by three survey papers on the problem, relating it to number theory and dynamical systems, to Markov chains and ergodic theory, and to logic and the theory of computation. The next paper presents results on probabilistic models for behavior of the iteration. This is followed by a paper giving the latest computational results on the problem, which verify its truth for \(x < 5.4 \cdot 10^{18}\). The book also reprints six early papers on the problem and related questions, by L. Collatz, J. H. Conway, H. S. M. Coxeter, C. J. Everett, and R. K. Guy, each with editorial commentary. The book concludes with an annotated bibliography of work on the problem up to the year 2000.

    Readership

    Graduate students and research mathematicians interested in number theory.

  • Table of Contents
     
     
    • Part I. Overview and introduction
    • 1. The $3x+1$ problem: An overview
    • 2. The $3x+1$ problem and its generalizations
    • Part II. Survey papers
    • 3. A $3x+1$ Survey: Number theory and dynamical systems
    • 4. Generalized $3x+1$ mappings: Markov chains and ergodic theory
    • 5. Generalized $3x+1$ functions and the theory of computation
    • Part III. Stochastic modelling and computation papers
    • 6. Stochastic models for the $3x+1$ and $5x+1$ problems and related problems
    • 7. Empirical verification of the $3x+1$ and related conjectures
    • Part IV. Reprinted early papers
    • 8. Cyclic sequences and Frieze patterns (The Fourth Felix Behrend Memorial Lecture)
    • 9. Unpredictable iterations
    • 10. Iteration of the number-theoretic function $f(2n)=n,f(2n+1)=3n+2$
    • 11. Don’t try to solve these problems!
    • 12. On the motivation and origin of the $(3n+1)$-problem
    • 13. FRACTRAN: A simple universal programming language for arithmetic
    • Part V. Annotated bibliography
    • 14. The $3x+1$ problem: An annotated bibliography (1963–1999)
  • Reviews
     
     
    • Let me cut to the chase: Lagarias has assembled a fantastic book on a fascinating topic, and it is the type of book that the mathematical community could use more of. The book assembles a variety of articles written about the topic over the last forty years, coming to the material from different directions and using different flavors of mathematics, all in service of trying to solve this problem.

      MAA Reviews
    • [This book] contains...two surveys by editor Lagarias...the world's foremost expert. [It also contains] a tremendously useful, richly annotated bibliography...[to] round out the volume. ....A must for all libraries. Highly recommended.

      D.V. Feldman, Choice
    • [T]his book is a thorough account of an open and challenging problem.

      Vincente Muqoz, The European Mathematical Society
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
2010; 344 pp
MSC: Primary 11; 37; Secondary 68

The \(3x+1\) problem, or Collatz problem, concerns the following seemingly innocent arithmetic procedure applied to integers: If an integer \(x\) is odd then “multiply by three and add one”, while if it is even then “divide by two”. The \(3x+1\) problem asks whether, starting from any positive integer, repeating this procedure over and over will eventually reach the number 1. Despite its simple appearance, this problem is unsolved. Generalizations of the problem are known to be undecidable, and the problem itself is believed to be extraordinarily difficult.

This book reports on what is known on this problem. It consists of a collection of papers, which can be read independently of each other. The book begins with two introductory papers, one giving an overview and current status, and the second giving history and basic results on the problem. These are followed by three survey papers on the problem, relating it to number theory and dynamical systems, to Markov chains and ergodic theory, and to logic and the theory of computation. The next paper presents results on probabilistic models for behavior of the iteration. This is followed by a paper giving the latest computational results on the problem, which verify its truth for \(x < 5.4 \cdot 10^{18}\). The book also reprints six early papers on the problem and related questions, by L. Collatz, J. H. Conway, H. S. M. Coxeter, C. J. Everett, and R. K. Guy, each with editorial commentary. The book concludes with an annotated bibliography of work on the problem up to the year 2000.

Readership

Graduate students and research mathematicians interested in number theory.

  • Part I. Overview and introduction
  • 1. The $3x+1$ problem: An overview
  • 2. The $3x+1$ problem and its generalizations
  • Part II. Survey papers
  • 3. A $3x+1$ Survey: Number theory and dynamical systems
  • 4. Generalized $3x+1$ mappings: Markov chains and ergodic theory
  • 5. Generalized $3x+1$ functions and the theory of computation
  • Part III. Stochastic modelling and computation papers
  • 6. Stochastic models for the $3x+1$ and $5x+1$ problems and related problems
  • 7. Empirical verification of the $3x+1$ and related conjectures
  • Part IV. Reprinted early papers
  • 8. Cyclic sequences and Frieze patterns (The Fourth Felix Behrend Memorial Lecture)
  • 9. Unpredictable iterations
  • 10. Iteration of the number-theoretic function $f(2n)=n,f(2n+1)=3n+2$
  • 11. Don’t try to solve these problems!
  • 12. On the motivation and origin of the $(3n+1)$-problem
  • 13. FRACTRAN: A simple universal programming language for arithmetic
  • Part V. Annotated bibliography
  • 14. The $3x+1$ problem: An annotated bibliography (1963–1999)
  • Let me cut to the chase: Lagarias has assembled a fantastic book on a fascinating topic, and it is the type of book that the mathematical community could use more of. The book assembles a variety of articles written about the topic over the last forty years, coming to the material from different directions and using different flavors of mathematics, all in service of trying to solve this problem.

    MAA Reviews
  • [This book] contains...two surveys by editor Lagarias...the world's foremost expert. [It also contains] a tremendously useful, richly annotated bibliography...[to] round out the volume. ....A must for all libraries. Highly recommended.

    D.V. Feldman, Choice
  • [T]his book is a thorough account of an open and challenging problem.

    Vincente Muqoz, The European Mathematical Society
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.