Preface: How to Use This Book xv

Acknowledgements xix

Chapter 1. Welcome to Sage! 1
 1.1. Using Sage as a Calculator 1
 1.2. Using Sage with Common Functions 3
 1.3. Using Sage for Trigonometry 7
 1.4. Using Sage to Graph 2-Dimensionally 9
 1.4.1. Controlling the Viewing Window of a Plot 11
 1.4.2. Superimposing Multiple Graphs in One Plot 15
 1.5. Matrices and Sage, Part 1 19
 1.5.1. A First Taste of Matrices 19
 1.5.2. Complications in Converting Linear Systems 20
 1.5.3. Doing the RREF in Sage 22
 1.5.4. Basic Summary 24
 1.5.5. The Identity Matrix 25
 1.5.6. A Challenge to Practice by Yourself 25
 1.5.7. Vandermonde’s Matrix 26
 1.5.8. The Semi-Rare Cases 28
 1.6. Making Your Own Functions in Sage 30
 1.7. Using Sage to Manipulate Polynomials 34
 1.8. Using Sage to Solve Problems Symbolically 37
 1.8.1. Solving Single-Variable Formulas 37
 1.8.2. Solving Multivariable Formulas 38
 1.8.3. Linear Systems of Equations 39
 1.8.4. Non-Linear Systems of Equations 40
 1.8.5. Advanced Cases 43
 1.9. Using Sage as a Numerical Solver 44
 1.10. Getting Help When You Need It 47
 1.11. Using Sage to Take Derivatives 49
 1.11.1. Plotting $f(x)$ and $f'(x)$ Together 50
CONTENTS

1.1.11.2. Higher-Order Derivatives 50
1.12. Using Sage to Calculate Integrals 51
1.13. Sharing the Results of Your Work 60

Chapter 2. Fun Projects Using Sage 63
2.1. Microeconomics: Computing a Selling Price 64
2.2. Biology: Clogged Arteries and Poiseuille’s Law 69
2.3. Industrial Optimization: Shipping Taconite 72
2.4. Chemistry: Balancing Reactions with Matrices 73
2.4.1. Background 74
2.4.2. Five Cool Examples 75
2.4.3. The Slow Way: Deriving the Method 75
2.4.4. Balancing the Quick Way 77
2.5. Physics: Ballistic Projectiles 79
2.5.1. Our First Example of Ballistic Trajectories 80
2.5.2. Our Second Example of Ballistic Trajectories 82
2.5.3. Counter-Battery Fire 83
2.5.4. Your Challenge: A Multi-Stage Rocket 84
2.6. Cryptology: Pollard’s $p - 1$ Attack on RSA 85
2.6.1. Background: B-Smooth Numbers and $B!$ 86
2.6.2. The Theory behind the Attack 87
2.6.3. Computing $2^{(B!)} \mod N$ 88
2.6.4. Your Challenge: Make All This Happen in Sage 90
2.6.5. Safeguards against Pollard’s Factorial Attack 90
2.7. Mini-Project on Electric Field Vector Plots 91

Chapter 3. Advanced Plotting Techniques 93
3.1. Annotating Graphs for Clarity 93
3.1.1. Labeling the Axes of Graphs 93
3.1.2. Grids and Graphing Calculator-Style Graphs 95
3.1.3. Adding Arrows and Text to Label Features 96
3.1.4. Graphing an Integral 97
3.1.5. Dotted and Dashed Lines 98
3.2. Graphs of Some Hyperactive Functions 99
3.3. Polar Plotting 100
3.3.1. Examples of Polar Graphs 102
3.3.2. Problems That Can Occasionally Happen 102
3.4. Graphing an Implicit Function 104
3.5. Contour Plots and Level Sets 106
3.5.1. An Application to Thermodynamics 109
3.5.2. Application to Microeconomics (Cobb-Douglas Equations) 112
3.6. Parametric 2D Plotting 114
3.7. Vector Field Plots 116
3.7.1. Gradients and Vector Field Plots 117
3.7.2. An Application from Physics 118
CONTENTS

3.7.3. Gradients versus Contour Plot 121
3.8. Log-Log Plots 122
3.9. Rare Situations 124

Chapter 4. Advanced Features of Sage 129
4.1. Using Sage with Multivariable Functions and Equations 129
4.2. Working with Large Formulas in Sage 131
4.2.1. Personal Finance: Mortgages 131
4.2.2. Physics: Gravitation and Satellites 134
4.3. Derivatives and Gradients in Multivariate Calculus 136
4.3.1. Partial Derivatives 136
4.3.2. Gradients 137
4.4. Matrices and Sage, Part 2 137
4.4.1. Defining Some Examples 137
4.4.2. Matrix Multiplication and Exponentiation 138
4.4.3. Right and Left System Solving 139
4.4.4. Matrix Inverses 141
4.4.5. Computing the Kernel of a Matrix 143
4.4.6. Determinants 145
4.5. Vector Operations 146
4.6. Working with the Integers and Number Theory 147
4.6.1. The gcd and the lcm 147
4.6.2. More about Prime Numbers 149
4.6.3. About Euler’s Phi Function 149
4.6.4. The Divisors of a Number 151
4.6.5. Another Meaning for tau 153
4.6.6. Modular Arithmetic 154
4.6.7. Further Reading in Number Theory 155
4.7. Some Minor Commands of Sage 155
4.7.1. Rounding, Floors, and Ceilings 155
4.7.2. Combinations and Permutations 155
4.7.3. The Hyperbolic Trigonometric Functions 157
4.8. Calculating Limits Expressly 158
4.9. Scatter Plots in Sage 159
4.10. Making Your Own Regressions in Sage 163
4.13. Measuring the Speed of Sage 166
4.15. Using Sage and \LaTeX 168
4.16. Matrices and Sage, Part 3 169
4.16.1. Introduction to Eigenvectors 169
4.16.2. Finding Eigenvalues Efficiently in Sage 171
4.16.3. Matrix Factorizations 172
4.16.4. Solving Linear Systems Approximately with Least Squares 173
4.17. Computing Taylor or MacLaurin Polynomials 175
4.17.1. Examples of Taylor Polynomials 176
4.17.2. An Application: Understanding How g Changes 177
4.18. Minimizations and Lagrange Multipliers 179
4.18.1. Unconstrained Optimization 179
4.18.2. Constrained Optimization by Lagrange Multipliers 181
4.18.3. A Lagrange Multipliers Example in Sage 181
4.18.4. Some Applied Problems 183
4.19. Infinite Sums and Series 184
4.19.1. Verifying Summation Identities 185
4.19.2. The Geometric Series 186
4.19.3. Using Sage to Guide a Summation Proof 187
4.20. Continued Fractions in Sage 188
4.21. Systems of Inequalities and Linear Programming 189
4.21.1. A Simple Example 190
4.21.2. Convenient Features in Practice 192
4.21.3. The Polyhedron of a 3-Variable Linear Program 194
4.21.4. Integer Linear Programs and Boolean Variables 194
4.21.5. Further Reading on Linear Programming 195
4.22. Differential Equations 195
4.22.1. Some Easy Examples 196
4.22.2. An Initial-Value Problem 198
4.22.3. Graphing a Slope Field 199
4.22.4. The Torpedo Problem: Working with Parameters 201
4.23. Laplace Transforms 203
4.23.1. Transforming from $f(t)$ to $L(s)$ 203
4.23.2. Computing the Laplace Transform “the Long Way” 204
4.23.3. Transforming from $L(s)$ to $f(t)$ 205
4.24. Vector Calculus in Sage 206
4.24.1. Notation for Vector-Valued Functions 206
4.24.2. Computing the Hessian Matrix 207
4.24.3. Computing the Laplacian 208
4.24.4. The Jacobian Matrix 209
4.24.5. The Divergence 210
4.24.6. Verifying an Old Identity 211
4.24.7. The Curl of a Vector-Valued Function 212
4.24.9. Multiple Integrals 216

Chapter 5. Programming in Sage and Python 219
5.1. Repetition without Boredom: The For Loop 220
5.1.1. Using Sage to Generate Tables 220
5.1.2. Carefully Formatting the Output 221
5.1.3. Arbitrary Lists 222
5.1.4. Loops with Accumulators 223
CONTENTS

5.1.5. Using Sage to Find a Limit, Numerically 224
5.1.6. For Loops and Taylor Polynomials 226
5.1.7. If You Already Know How to Program... 227
5.2. Writing Subroutines 228
5.2.1. An Example: Working with Coinage 228
5.2.2. A Challenge: A Cash Register 230
5.2.3. An Example: Designing Aquariums 231
5.2.4. A Challenge: A Cylindrical Silo 233
5.2.5. Combining Loops and Subroutines 233
5.2.6. Another Challenge: Totaling a Sequence 234
5.3. Loops and Newton’s Method 235
5.3.1. What Is Newton’s Method? 235
5.3.2. Newton’s Method with a For Loop 238
5.3.3. Testing the Code 239
5.3.4. Numerical versus Exact Representations 241
5.3.5. Working with Optional and Mandatory Parameters 242
5.3.6. Returning a Value and Nesting Subroutines 244
5.3.7. A Challenge: Finding a Point of Agreement 246
5.3.8. A Challenge: Finding Parallel Tangent Lines 246
5.3.9. A Challenge: Halley’s Method 248
5.4. An Introduction to Control Flow 249
5.4.1. Verbosity Control 249
5.4.2. Theoretical Interlude: When Newton’s Method Goes Crazy 251
5.4.3. Stopping Newton’s Method Early 254
5.4.4. The List of Comparators 257
5.4.5. A Challenge: How Many Primes Are Less Than x? 257
5.5. More Concepts in Flow Control 258
5.5.1. Raising an “Exception” 258
5.5.2. The If-Then-Else Construct 260
5.5.3. Easy Challenge: Registrar’s End of Semester Run, Part 1 262
5.5.4. A Harder Challenge: Registrar’s End of Semester Run, Part 2 262
5.6. While Loops versus For Loops 263
5.6.1. A Question about Factorials 263
5.6.2. A Challenge: Finding the Next Prime Number 264
5.6.3. Newton’s Method with a While Loop 264
5.6.4. The Impact of Repeated Roots 265
5.6.5. Factorization by Trial Division 267
5.6.6. A Mini-Challenge: Trial Division, Stopping Early 268
5.6.7. A Challenge: An Upgraded Cash Register 269
5.7. How Arrays and Lists Work 270
5.7.1. Lists of Points and Plotting 270
5.7.2. A Challenge: Making the Plot Command 272
5.7.3. Operations on Lists 272
5.7.4. Looping through an Array 274
5.7.5. A Challenge: A Company Profit Report 275
5.7.6. Averaging Some Numbers 276
5.7.7. Mini-Challenge: Averaging, Both with and without Dropping 277
5.7.8. Mini-Challenge: Doubling Counting the Highest Quiz 277
5.7.9. A Challenge: Registrar’s End of Semester Run, Part 3 277
5.7.10. A Utility: Returning Only Real, Rational, or Integer Roots 278
5.8. Where Do You Go from Here? 279
5.8.1. Further Resources on Python Programming 279
5.8.2. What Has Been Left Out? 280
Chapter 6. Building Interactive Webpages with Sage 285
6.1. The Six-Stage Process for Building Interacts 286
6.2. The Tangent-Line Interact 287
Stage 0: Develop a Concept 287
Stage 1: Design a Sage Subroutine 288
Stage 2: Polish This Subroutine 290
Stage 3: Convert to an Interactive Subroutine 291
Stage 4: Insert into a Web Template 292
Stage 5: Flesh-Out the Webpage 295
6.3. A Challenge to the Reader 295
6.4. The Optimal Aquarium Interact 295
6.5. Selectors and Checkboxes 296
6.6. The Definite Integral Interact 297
Appendix A. What to Do When Frustrated! 299
Appendix B. Transitioning to SageMathCloud 305
B.2. Getting Started in SageMathCloud 306
B.3. Other Cloud Features 307
Appendix C. Other Resources for Sage 309
Appendix D. Linear Systems with Infinitely Many Solutions 313
D.1. The Opening Example 313
D.2. Another Example 316
D.3. Exploring Deeper 318
D.3.1. An Interesting Re-Examination of Unique Solutions 318
D.3.2. Two Equations and Four Unknowns 319
D.3.3. Two Equations and Four Unknowns, but No Solutions 319
D.3.4. Four Equations and Three Unknowns 320
D.4. Misconceptions 320
D.5. Formal Definitions of REF and RREF 321
D.6. Alternative Notation 322
D.7. Geometric Interpretations in Three Dimensions 322
CONTENTS

D.7.1. Visualization of These Cases 323
D.7.2. Geometric Interpretations in Higher Dimensions 324
D.8. Dummy-Variable Notation 324
D.9. Solutions to Challenges 325

Appendix E. Installing Sage on Your Personal Computer 327
Appendix F. Index of Commands by Section and by Name 331
List of References 351