Contents

Preface xi

Acknowledgments xv

Part 1. Universes

Chapter 1. An Introduction to the Shape of the Universe 3
 1. To Infinity and Beyond 3
 2. A. Square and His Universe 5
 3. Straightest Paths in Flatland 8
 4. Exploring the Shape of a Cave 11
 5. Creating Universes by Gluing 13
 6. Games on a Gluing Diagram for a Cylinder and a Torus 15
 7. Extended Diagrams 17
 8. Introducing the 3-Dimensional Torus and Sphere 19
 9. Distinguishing a 2-Sphere from a 2-Torus 22
 10. Distinguishing a 3-Sphere from a 3-Torus 24
 11. Exercises 26

Chapter 2. Visualizing Four Dimensions 29
 1. Teaching A. Square About the Third Dimension 29
 2. Projections and Perceptions 31
 3. Movies and Movement 33
 4. Inductively Defining Cubes of Dimensions 0, 1, 2, and 3 36
 5. A. Square Learns About a 3-Dimensional Cube 37
 6. A 4-Dimensional Cube 40
 7. Tetrahedra in Various Dimensions 42
 8. Exercises 44

Chapter 3. Geometry and Topology of Different Universes 49
 1. Intrinsic and Extrinsic Properties of a Space 49
 2. Intrinsic and Extrinsic Geometry 52
 3. Straightest Paths and Geodesics 53
 4. The Definition of a Triangle 59
 5. The Sum of the Angles of a Triangle 60
 6. Triangles on a Flat and Curved Torus 61
 7. Triangles on a Flat and a Curved Cylinder 62
 8. Extrinsic and Intrinsic Topology 64
 9. Using Loops to Understand Intrinsic Topology 67
 10. Local and Global Properties 69
11. Manifolds 71
12. Assumptions about Universes 72
13. A 2-Dimensional Sphere with a Point Removed 74
14. A 3-Dimensional Sphere with a Point Removed 77
15. Curves on a Torus 78
16. How to Draw a \((p, q)\)-Curve on a Flat Torus 80
17. Lines in the Extended Diagram of a Flat Torus 83
18. Exercises 84

Chapter 4. Orientability 87
1. The Möbius Strip 87
2. Orientation Reversing Paths 89
3. The Klein Bottle 90
4. The 3-Dimensional Klein Bottle 92
5. Tic-Tac-Toe on a Torus and Klein Bottle 93
6. The Projective Plane 96
7. The Projective Plane with a Disk Removed 98
8. Projective 3-Dimensional Space 100
9. 1-Sided and 2-Sided Surfaces 101
10. Non-orientability and 1-Sidedness 103
11. Exercises 106

Chapter 5. Flat Manifolds 109
1. Flat Surfaces 109
2. Flat Gluing Diagrams 110
3. The Point of a Cone 114
4. Using Extended Diagrams to Understand Cone Points 116
5. Anti-cone Points 119
6. We Show that the 3-Torus Is Flat 120
7. A Method to Determine if a Glued Up Cube Is Flat 122
8. Extended Diagrams of Glued Up Cubes 123
9. Other Types of Gluings of a Cube 127
10. Exercises 128

Chapter 6. Connected Sums of Spaces 135
1. Einstein-Rosen Bridges 135
2. Connected Sums of Surfaces 136
3. Arithmetic Properties of the Connected Sum 137
4. Gluing Diagrams for \(nT^2\) and \(nP^2\) 138
5. The Classification of Surfaces 140
6. Dividing a Surface into Vertices, Edges, and Faces 142
7. The Euler Characteristic of a Surface 144
8. The Euler Characteristic of Connected Sums 146
9. The Genus of a Surface 147
10. The Genus of \(nT^2\) and \(nP^2\) 150
11. Connected Sums of 3-Manifolds 151
12. Exercises 153

Chapter 7. Products of Spaces 157
1. Products of Sets 157
2. Products of Spaces 159
3. A. Square and A. Pentagon Are Products 160
4. Some Products where One Factor Is a Circle 162
5. Examples of Spaces Incorrectly Expressed as Products 164
6. The Topological Uniqueness of Products 166
7. The Dimension of Product Spaces 167
8. Visualizing $S^2 \times S^1$ and $nT^2 \times S^1$ 168
9. Geometric Products 170
10. Geometric Products of Flat Spaces 171
11. A Flatland-Friendly Geometric $S^1 \times I$ 173
12. Flat 3-Dimensional Spaces as Geometric Products 174
13. A Geometric $nT^2 \times S^1$ 177
14. A Geometric $S^2 \times S^1$ 179
15. Isotropic and Non-isotropic Spaces 180
16. Exercises 181

Chapter 8. Geometries of Surfaces 185
1. Euclid’s Axioms 185
2. Flat Surfaces and Euclidean Geometry 191
3. Some Alternative Axioms 192
4. Spherical Trigonometry 193
5. The Area of a Disk in a Sphere 196
6. Maps of the Earth 199
7. Hyperbolic Geometry 200
8. A. Square Learns to Draw a Hyperbolic Plane 202
9. Homogeneous Geometries for all nT^2 with $n \geq 2$ 205
10. A Homogeneous Geometry for P^2 207
11. Uniqueness of Homogeneous Geometries for Surfaces 208
12. Exercises 209

Part 2. Knots

Chapter 9. Introduction to Knot Theory 215
1. 1-Dimensional Universes 215
2. When Are Two Knots Equivalent? 217
3. The Mirror Image of a Knot or Link 219
4. The Connected Sum of Two Knots 220
5. A Brief History of Knot Theory 221
6. Reidemeister Moves 223
7. Coloring Knots with Three Colors 226
8. Tricolorability and Knot Equivalence 229
9. Oriented Knots and Invertibility 232
10. Connected Sums of Non-invertible Knots 233
11. Exercises 235

Chapter 10. Invariants of Knots and Links 239
1. What’s an Invariant? 239
2. Crossing Number, Tricolorability, and Number of Components 241
3. Positive and Negative Crossings 242