Contents

Foreword vii
Introduction ix
1. Top-Tier Math Circles ix
2. Why, What, and for Whom? xi
3. Notation and Technicalities xv
4. The Art of Being a Mathematician and Problem Solving xvi
5. Acknowledgments xvii

Session 1. Inversion in the Plane. Part I 1
1. Why Inversion? Motivation 1
2. Inversion as a Transformation 3
3. Definition of Inversion 4
4. Basic Properties of Inversion 5
5. Problem Solving Techniques with Inversion 9
6. Solving Our First Problems with Inversion 10
7. How Does Inversion Affect Distances? 15
8. Proof of Ptolemy’s Theorem 17
9. How Are Inversion Problems Created? 19
10. Hints and Solutions to Selected Problems 22

Session 2. Combinatorics. Part I 25
1. Two Counting Conundrums 25
2. Multiplication, Menus, and Encoding 26
3. Addition and Partition 31
4. Division: A Cure for Uniform Overcounting 35
5. Balls in Urns and Other Applications 40
6. Sororities of Numbers: A Promise Fulfilled 44

Session 3. Rubik’s Cube. Part I 47
1. Getting Started and Some Notation 47
2. Encoding the Rubik’s Cube Mathematically 49
3. Some Basic Features of Rubik’s Cube Moves 51
4. Visualizing Permutations 55
5. Cycle Structure of Permutations 57
6. Applications of Cycle Structure to the Cube 59
7. Conclusions 62

Session 4. Number Theory. Part I 63
1. Wearing the Crown of Mathematics 63
2. Remainders: Where It All Began 67
3. Congruences in \(\mathbb{Z} \) 70
4. Properties of Congruences 72
5. Remainders Learn to Ride a Bike 75
6. Twists in the Brute-Force Approach 78
7. Pairs and Divisibility 81
8. Hints and Solutions to Selected Problems 84

Session 5. A Few Words About Proofs. Part I 87
1. Why Prove Things? 87
2. Proofs versus Non-proofs 88
3. Proof by Contradiction 91
4. Proofs of Possibility and Impossibility 93
5. Some Problems Need Two Proofs! 97
6. Hints and Solutions to Selected Problems 100

Session 6. Mathematical Induction 103
1. Examples and Conjectures 103
2. Mathematical Induction and Proof 106
3. Mathematical Induction in Action 108
4. Strong Induction 115
5. Mathematical Induction in Other Areas 120
6. A Word of Caution 122
7. Hints and Solutions to Selected Problems 123

Session 7. Mass Point Geometry 127
1. Introduction 127
2. Definition and Properties of Mass Points 130
3. Fundamental Examples 134
4. Angle Bisectors and Altitudes 136
5. Areas, Space, and Splitting Masses 139
6. Ceva, Menelaus, and Associativity of Addition 142
7. Examples of Contest Problems 145
8. History and Sources 151
9. Hints and Solutions to Selected Problems 151

Session 8. More on Proofs. Part II 155
1. Proof by Induction Again 155
2. Extremes Are Naturally Demanding 162
3. The Pigeonhole Principle 165
4. Hints and Solutions to Selected Problems 175

Session 9. Complex Numbers. Part I 179
1. A Problem from Geometry 179
2. Some History 180
CONTENTS

3. Complex Numbers via Geometry 183
4. Basic Operations on Complex Numbers 183
5. Complex Multiplication 187
6. Another Form of Complex Numbers 192
7. Summary: What Have We Learned? 194
8. Hints and Solutions to Selected Problems 196

Session 10. Stomp. Games with Invariants 203
1. Warm-up Classics 203
2. Invariants with Numbers 206
3. Stomp 211
4. Tilings and More Invariants 215
5. Escape of the Clones 216
6. Hints and Solutions to Selected Problems 219

Session 11. Favorite Problems at BMC. Part I 225
1. The Search for the Missing Circle 225
2. Inscribed and Central Angles 227
3. “Going-in-Circles” 229
4. Going “off on a Tangent” Leads Straight to the Point! 233
5. When Phantom Circles Team up with Tangents 235
6. Constructing Cyclic Trapezoids “out of Thin Air” 239
7. Hints and Solutions to Selected Problems 243

Session 12. Monovariants. Part I 249
1. China Shops and Chocolate Bars 249
2. Walking around a Mansion 251
3. Finite versus Infinite 254
4. Monovariant Teamwork 257
5. Women and Men Walking around the Mansion 260
6. Non-numerical Monovariants 263
7. Mansion Appendix for the Advanced Reader 268
8. Hints and Solutions to Selected Problems 279

Epilogue 285
1. What Comes from Within 285
2. The Culture of Circles 286
3. Eastern European vs. USA Math Circles 287
4. History and Power 290
5. Does the U.S. Need Top-Tier Math Circles? 294

Symbols and Notation 299
Abbreviations 301
Biographical Data 303
Bibliography 309
Credits 313
Index 315