# Coarse Cohomology and Index Theory on Complete Riemannian Manifolds

Share this page
*John Roe*

“Coarse geometry” is the study of metric spaces from the asymptotic point of view: two metric spaces (such as the integers and the real numbers) which “look the same from a great distance” are considered to be equivalent. This book develops a cohomology theory appropriate to coarse geometry. The theory is then used to construct “higher indices” for elliptic operators on noncompact complete Riemannian manifolds. Such an elliptic operator has an index in the \(K\)-theory of a certain operator algebra naturally associated to the coarse structure, and this \(K\)-theory then pairs with the coarse cohomology. The higher indices can be calculated in topological terms thanks to the work of Connes and Moscovici. They can also be interpreted in terms of the \(K\)-homology of an ideal boundary naturally associated to the coarse structure. Applications to geometry are given, and the book concludes with a discussion of the coarse analog of the Novikov conjecture.

#### Table of Contents

# Table of Contents

## Coarse Cohomology and Index Theory on Complete Riemannian Manifolds

- Contents vii8 free
- Chapter 1. Introduction 112 free
- Chapter 2. Basic properties of coarse cohomology 718 free
- Chapter 3. Computation of coarse cohomology 2132
- Chapter 4. Cyclic cohomology and index theory 3950
- Chapter 5. Coarse cohomology and compactification 5768
- Chapter 6. Examples and Applications 6980
- References 8798