eBook ISBN:  9781470402075 
Product Code:  MEMO/130/618.E 
List Price:  $54.00 
MAA Member Price:  $48.60 
AMS Member Price:  $32.40 
eBook ISBN:  9781470402075 
Product Code:  MEMO/130/618.E 
List Price:  $54.00 
MAA Member Price:  $48.60 
AMS Member Price:  $32.40 

Book DetailsMemoirs of the American Mathematical SocietyVolume: 130; 1997; 174 ppMSC: Primary 22; Secondary 17;
In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under natural reductions setting aside the “group part” of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists. The main protagonists on the scene are \(SL(2,R)\) and its universal covering group, almost abelian solvable Lie groups (i.e., vector groups extended by homotheties), and compact Lie groups.
ReadershipGraduate students and research mathematicians interested in the structure of Lie groups, Lie algebras, and applications like geometric control.

Table of Contents

Chapters

1. Introduction

2. The basic theory of exponential semigroups in Lie groups

3. Weyl groups and finiteness properties of Cartan subalgebras

4. Lie semialgebras

5. More examples

6. Test algebras and groups

7. Groups supporting reduced weakly exponential semigroups

8. Roots and root spaces

9. Appendix: The hyperspace of a locally compact space


Reviews

The proof is the heart and bulk of the Memoir and involves extensive use of Lie group and Lie algebra machinery and the development of new Lie theoretic results ... The authors have written a nice summary of their work [4]. There the reader may find motivating examples described and pictured, detailed definitions and statements of problems and theorems, an introduction to the proof methods and strategies, and statements of major intermediate results derived along the way.
Semigroup Forum


RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
 Book Details
 Table of Contents
 Reviews
 Requests
In the structure theory of real Lie groups, there is still information lacking about the exponential function. Most notably, there are no general necessary and sufficient conditions for the exponential function to be surjective. It is surprising that for subsemigroups of Lie groups, the question of the surjectivity of the exponential function can be answered. Under natural reductions setting aside the “group part” of the problem, subsemigroups of Lie groups with surjective exponential function are completely classified and explicitly constructed in this memoir. There are fewer than one would think and the proofs are harder than one would expect, requiring some innovative twists. The main protagonists on the scene are \(SL(2,R)\) and its universal covering group, almost abelian solvable Lie groups (i.e., vector groups extended by homotheties), and compact Lie groups.
Graduate students and research mathematicians interested in the structure of Lie groups, Lie algebras, and applications like geometric control.

Chapters

1. Introduction

2. The basic theory of exponential semigroups in Lie groups

3. Weyl groups and finiteness properties of Cartan subalgebras

4. Lie semialgebras

5. More examples

6. Test algebras and groups

7. Groups supporting reduced weakly exponential semigroups

8. Roots and root spaces

9. Appendix: The hyperspace of a locally compact space

The proof is the heart and bulk of the Memoir and involves extensive use of Lie group and Lie algebra machinery and the development of new Lie theoretic results ... The authors have written a nice summary of their work [4]. There the reader may find motivating examples described and pictured, detailed definitions and statements of problems and theorems, an introduction to the proof methods and strategies, and statements of major intermediate results derived along the way.
Semigroup Forum