NOTATION
7r symplectic fibration P O (pp. 47,48)
Fv fiber
T T - 1 ^ )
(p. 48)
FM pseudoleaf j
_ 1
( / i ) (p. 70)
F symplectic cross-section
7r-1(/io)
of P (p. 48),
or arbitrary Hamiltonian T-space
UJF symplectic structure on F (p. 48)
JF momentum map F —• t* of action of T on F (p. 48)
horx horizontal space at x G P of symplectic connection
on 7 T : P - (9 (p. 49)
0 canonical one-form on T*G (p. 53)
L5, it!5 map G » G sending # to #/i (resp. %)
T*0 covariant cotangent lift of 0 (p. 53)
(£J r)vf vector field on G x tj defined on p. 54
Ap map g* t1- defined on p. 56
A, p left (resp. right) trivialization SO(3) x
R3
-^ TSO(3) (p. 65)
p projection F -• F/ T (p. 70)
symplectic form on leaf FM (p. 70)
D arbitrary complement for the characteristic
distribution on F/T (p. 71)
Ly natural isomorphism t* —• D(y) (p. 71)
D^ differential operator ttk(F/T; R) -• ^ ( F ^ ; t) defined on p. 71
UJ
Previous Page Next Page