Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Entropy and Multivariable Interpolation
 
Gelu Popescu University of Texas at San Antonio, San Antonio, TX
Entropy and Multivariable Interpolation
eBook ISBN:  978-1-4704-0472-7
Product Code:  MEMO/184/868.E
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $36.00
Entropy and Multivariable Interpolation
Click above image for expanded view
Entropy and Multivariable Interpolation
Gelu Popescu University of Texas at San Antonio, San Antonio, TX
eBook ISBN:  978-1-4704-0472-7
Product Code:  MEMO/184/868.E
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $36.00
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 1842006; 83 pp
    MSC: Primary 47

    We define a new notion of entropy for operators on Fock spaces and positive multi-Toeplitz kernels on free semigroups. This is studied in connection with factorization theorems for (e.g., multi-Toeplitz, multi-analytic, etc.) operators on Fock spaces. These results lead to entropy inequalities and entropy formulas for positive multi-Toeplitz kernels on free semigroups (resp. multi-analytic operators) and consequences concerning the extreme points of the unit ball of the noncommutative analytic Toeplitz algebra \(F_n^\infty\).

    We obtain several geometric characterizations of the central intertwining lifting, a maximal principle, and a permanence principle for the noncommutative commutant lifting theorem. Under certain natural conditions, we find explicit forms for the maximal entropy solution of this multivariable commutant lifting theorem.

    All these results are used to solve maximal entropy interpolation problems in several variables. We obtain explicit forms for the maximal entropy solution (as well as its entropy) of the Sarason, Carathéodory-Schur, and Nevanlinna-Pick type interpolation problems for the noncommutative (resp. commutative) analytic Toeplitz algebra \(F_n^\infty\) (resp. \(W_n^\infty\)) and their tensor products with \(B({\mathcal H}, {\mathcal K})\). In particular, we provide explicit forms for the maximal entropy solutions of several interpolation problems on the unit ball of \(\mathbb{C}^n\).

  • Table of Contents
     
     
    • Chapters
    • Introduction
    • 1. Operators on Fock spaces and their entropy
    • 2. Noncommutative commutant lifting theorem: Geometric structure and maximal entropy solution
    • 3. Maximal entropy interpolation problems in several variables
  • Reviews
     
     
    • I am compelled to say some words on how valuable this memoir is as a monograph on the subject. ...as a continuation on the author's previous papers. This memoir is a worthwhile addition.

      Journal of Approximation Theory
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 1842006; 83 pp
MSC: Primary 47

We define a new notion of entropy for operators on Fock spaces and positive multi-Toeplitz kernels on free semigroups. This is studied in connection with factorization theorems for (e.g., multi-Toeplitz, multi-analytic, etc.) operators on Fock spaces. These results lead to entropy inequalities and entropy formulas for positive multi-Toeplitz kernels on free semigroups (resp. multi-analytic operators) and consequences concerning the extreme points of the unit ball of the noncommutative analytic Toeplitz algebra \(F_n^\infty\).

We obtain several geometric characterizations of the central intertwining lifting, a maximal principle, and a permanence principle for the noncommutative commutant lifting theorem. Under certain natural conditions, we find explicit forms for the maximal entropy solution of this multivariable commutant lifting theorem.

All these results are used to solve maximal entropy interpolation problems in several variables. We obtain explicit forms for the maximal entropy solution (as well as its entropy) of the Sarason, Carathéodory-Schur, and Nevanlinna-Pick type interpolation problems for the noncommutative (resp. commutative) analytic Toeplitz algebra \(F_n^\infty\) (resp. \(W_n^\infty\)) and their tensor products with \(B({\mathcal H}, {\mathcal K})\). In particular, we provide explicit forms for the maximal entropy solutions of several interpolation problems on the unit ball of \(\mathbb{C}^n\).

  • Chapters
  • Introduction
  • 1. Operators on Fock spaces and their entropy
  • 2. Noncommutative commutant lifting theorem: Geometric structure and maximal entropy solution
  • 3. Maximal entropy interpolation problems in several variables
  • I am compelled to say some words on how valuable this memoir is as a monograph on the subject. ...as a continuation on the author's previous papers. This memoir is a worthwhile addition.

    Journal of Approximation Theory
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.