eBook ISBN: | 978-1-4704-1673-7 |
Product Code: | MEMO/230/1083.E |
List Price: | $65.00 |
MAA Member Price: | $58.50 |
AMS Member Price: | $39.00 |
eBook ISBN: | 978-1-4704-1673-7 |
Product Code: | MEMO/230/1083.E |
List Price: | $65.00 |
MAA Member Price: | $58.50 |
AMS Member Price: | $39.00 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 230; 2014; 83 ppMSC: Primary 81; Secondary 35; 58
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold \(\mathcal{A}\) with a potential that localizes a certain subspace of states close to a fixed submanifold \(\mathcal{C}\). When the authors scale the potential in the directions normal to \(\mathcal{C}\) by a parameter \(\varepsilon\ll 1\), the solutions concentrate in an \(\varepsilon\)-neighborhood of \(\mathcal{C}\). This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold \(\mathcal{C}\) and show that its solutions, suitably lifted to \(\mathcal{A}\), approximate the solutions of the original equation on \(\mathcal{A}\) up to errors of order \(\varepsilon^3|t|\) at time \(t\). Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order \(\varepsilon^3\) with those of the full Hamiltonian under reasonable conditions.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. Main results
-
3. Proof of the main results
-
4. The whole story
-
A. Geometric definitions and conventions
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Requests
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold \(\mathcal{A}\) with a potential that localizes a certain subspace of states close to a fixed submanifold \(\mathcal{C}\). When the authors scale the potential in the directions normal to \(\mathcal{C}\) by a parameter \(\varepsilon\ll 1\), the solutions concentrate in an \(\varepsilon\)-neighborhood of \(\mathcal{C}\). This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold \(\mathcal{C}\) and show that its solutions, suitably lifted to \(\mathcal{A}\), approximate the solutions of the original equation on \(\mathcal{A}\) up to errors of order \(\varepsilon^3|t|\) at time \(t\). Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order \(\varepsilon^3\) with those of the full Hamiltonian under reasonable conditions.
-
Chapters
-
1. Introduction
-
2. Main results
-
3. Proof of the main results
-
4. The whole story
-
A. Geometric definitions and conventions