Softcover ISBN: | 978-1-4704-4144-9 |
Product Code: | MEMO/264/1282 |
List Price: | $85.00 |
MAA Member Price: | $76.50 |
AMS Member Price: | $51.00 |
eBook ISBN: | 978-1-4704-5810-2 |
Product Code: | MEMO/264/1282.E |
List Price: | $85.00 |
AMS Member Price: | $76.50 |
Softcover ISBN: | 978-1-4704-4144-9 |
eBook: ISBN: | 978-1-4704-5810-2 |
Product Code: | MEMO/264/1282.B |
List Price: | $170.00 $127.50 |
MAA Member Price: | $114.75 |
AMS Member Price: | $127.50 $76.50 |
Softcover ISBN: | 978-1-4704-4144-9 |
Product Code: | MEMO/264/1282 |
List Price: | $85.00 |
MAA Member Price: | $76.50 |
AMS Member Price: | $51.00 |
eBook ISBN: | 978-1-4704-5810-2 |
Product Code: | MEMO/264/1282.E |
List Price: | $85.00 |
AMS Member Price: | $76.50 |
Softcover ISBN: | 978-1-4704-4144-9 |
eBook ISBN: | 978-1-4704-5810-2 |
Product Code: | MEMO/264/1282.B |
List Price: | $170.00 $127.50 |
MAA Member Price: | $114.75 |
AMS Member Price: | $127.50 $76.50 |
-
Book DetailsMemoirs of the American Mathematical SocietyVolume: 264; 2020; 120 ppMSC: Primary 18; 14; Secondary 58
The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings.
This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, which extends to derived and spectral Deligne-Mumford stacks as well.
-
Table of Contents
-
Chapters
-
1. Introduction
-
2. Preliminaries on higher topos theory
-
3. Local Homeomorphisms and Étale Maps of $\infty $-Topoi
-
4. Structured $\infty $-Topoi
-
5. Étendues: Gluing Local Models
-
6. Examples
-
-
Additional Material
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Additional Material
- Requests
The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra but also to differential topology, complex geometry, the theory of supermanifolds, derived manifolds etc., where it produces a theory of higher generalized orbifolds appropriate for these settings.
This universal framework yields new insights into the general theory of Deligne-Mumford stacks and orbifolds, including a representability criterion which gives a categorical characterization of such generalized Deligne-Mumford stacks. This specializes to a new categorical description of classical Deligne-Mumford stacks, which extends to derived and spectral Deligne-Mumford stacks as well.
-
Chapters
-
1. Introduction
-
2. Preliminaries on higher topos theory
-
3. Local Homeomorphisms and Étale Maps of $\infty $-Topoi
-
4. Structured $\infty $-Topoi
-
5. Étendues: Gluing Local Models
-
6. Examples