CONTENTS
Abstract v
1. Problems, Methods, and Main Results 1
PART I. PRELIMINARIES
2. Brouwerian Counterexamples 7
3. Real Numbers 13
4. Infima and Suprema 21
5. Metric Spaces 29
PART II. RELIEFS AND CONTINUOUS FUNCTIONS
6. Reliefs 35
7. Continuity 49
8. Intermediate Values 57
9. Bounds and Extremes 61
10. Connectivity and Convexity 65
11. Located Sets 71
PART III. MONOTONE FUNCTIONS
12. Monotonicity 75
13. Monotonicity and Continuity 81
PART IV. RELIEF FUNCTIONS AND THE LIMITED CONTINUITY PRINCIPLE
14. Relief Functions 85
15. Existence of Relief Functions 97
16. The Limited Continuity Principle 103
References 111
Index of Symbols 113
Index of Terms 115
iii
Previous Page Next Page