30

AMREIN BOUTET DE MONVEL-BERTHIER GEORGESCU

Corollary 2.13 : Let q £ 1 and assume that S and R are small at infinity

in the sense of Proposition 2.10 . Then there are constants c and r such

that for all c p G C(q,p) and all v G P(r) :

(2.47) I I i V 1 1 2 = CH i V L ( ( P ) v | 1 + C|1 PV|1 + C|1 ( 1 + c p ' ) v l l

( 2 . 4 8 ) || v ||

2

* c || L((p)v|| + o || (l+p»)Pv|| + c || (l+cp«)

2

v| | .

Proof : We may apply (2.45) with n = (1+tp1) and n = 1 respectively . •