T A B L E O F C O N T E N T S
Introduction 1
I. The Brauer-BGG Reciprocity Theorem.
§1.1. Introduction/Notation 5
§1.2. Equivalence between Simples and Projectives in C and Cgr 7
§1.3. V±oj Filtrations of Projectives 12
II. Verma Modules over Generalized Witt Algebras.
§2.1. Introduction/Notation 19
§2.2. An Explicit Module Action for the Induced Module 21
§2.3. The Reduction Theorem 27
§2.4. Properties of the Total Derivative Homomorphism 31
§2.5. Simplicity of the Image S(At[T]) 35
III. Cartan Invariants for Lie Algebras of Cartan Type.
§3.1. Decomposition of the Cartan Matrix for Types W and K 47
§3.2. W(m, 1) and A'(m, 1) are of One Block Type 55
§3.3. The Cartan Invariants for U(W(l, 1)) and U(W(2,1)) 64
§3.4. The Cartan Invariants for U(W(m, n)) 71
References 81
v
Previous Page Next Page