Contents

Preface vii

Chapter 1. Direct problem of the oscillations theory of loaded strings 1
Chapter 2. Eigenvectors of tridiagonal Hermitian matrices 11
Chapter 3. Spectral function of tridiagonal Hermitian matrix 19
Chapter 4. Schmidt–Sonin orthogonalization process 25
Chapter 5. Construction of the tridiagonal matrix from a given spectral function 33
Chapter 6. Reconstruction of tridiagonal matrices from two spectra 41
Chapter 7. Solution methods for inverse problems 51
Chapter 8. Small oscillations, the potential energy matrix and L-matrix, and direct and inverse problems of the theory of small oscillations 61
Chapter 9. Observable and computable values and reducing inverse problems of the theory of small oscillations to the inverse problem of spectral analysis for Hermitian matrices 67
Chapter 10. General solution to the inverse problem of spectral analysis for Hermitian matrices 73
Chapter 11. Interaction of particles and systems with pairwise interactions 77
Chapter 12. Indecomposable systems, M-extensions, and the graph of interactions 81
Chapter 13. The main lemma 85
Chapter 14. Reconstructing a Hermitian matrix $M \in \mathfrak{M}(m)$ using its spectral data, restricted to a completely M-extendable set 89
Chapter 15. Properties of completely M-extendable sets 95
Chapter 16. Examples of L-extendable subsets 101
Chapter 17. Computing masses of particles using the L-matrix of a system 107
Chapter 18. Reconstructing a Hermitian matrix using its spectrum and the spectra of several of its perturbations 113
Chapter 19. The inverse scattering problem 117
Chapter 20. Solving the inverse problem of the theory of small oscillations numerically 131
Chapter 21. Analysis of spectra for the discrete Fourier transform 133
Chapter 22. Computing the coordinates of eigenvectors of an L-matrix corresponding to observable particles 141
Chapter 23. A numerical orthogonalization method for a set of vectors 145
Chapter 24. A recursion for computing the coordinates of eigenvectors of an L-matrix 147
Chapter 25. Examples of solving numerically the inverse problem of the theory of small oscillations 151
Bibliography 157