144 MICHAEL F. BARNSLEY
[Diac86] P. M. Diaconis and M. Shahshahani, Products of random matrices and computer
image generation, Contemp. Math. 50 (1986), 173-182.
[Elto86] J. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynamical Systems
7(1987), 481-488.
[Gilb82] W. J. Gilbert, Fractal geometry derived from complex bases, Math. Intelligencer 4
(1982), 78-86.
[Hard86] D. P. Hardin and P. Massopust, Dynamical systems arising from iterated function
systems, Comm. Math. Phys. 105 (1986), 455-460.
[Hata85] M. Hata, On the structure of self similar sets, Japan J. Appl. Math. 2 (1985), 381-
414.
[Hutc81] J. Hutchinson, Fractals and self similarity, Indiana Univ. J. Math. 30 (1981), 713-
747.
[Mand82] B. Mandelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982.
[Peit86] H.-O. Peitgen and P. H. Richter, The beauty of fractals, Springer-Verlag, Berlin and
New York, 1986.
[Reut87] L. Reuter, Rendering and magnification of fractals using iterated function systems,
Ph.D. Thesis, Georgia Institute of Technology, December 1987.
[Sina76] Ya. G. Sinai, Introduction to ergodic theory, Princeton University Press, 1976.
[Sull82] D. Sullivan, Quasi conformal homeomorphisms and dynamics, I, II, and III, Inst.
Hautes Etudes Sci., Bures-sur-Yvette, France, 1982 (preprints).
[With87] W. D. Withers, Calculating derivatives with respect to parameters of average values
in iterated function systems, Phys. D 28 (1987), 206-214.
SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332
ITERATED SYSTEMS INC., 5550-A PEACHTREE PARKWAY, NORCROSS, GEORGIA 30092
Previous Page Next Page