Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
The Santa Cruz Conference on Finite Groups
 
The Santa Cruz Conference on Finite Groups
Hardcover ISBN:  978-0-8218-1440-6
Product Code:  PSPUM/37
List Price: $139.00
MAA Member Price: $125.10
AMS Member Price: $111.20
eBook ISBN:  978-0-8218-9326-5
Product Code:  PSPUM/37.E
List Price: $135.00
MAA Member Price: $121.50
AMS Member Price: $108.00
Hardcover ISBN:  978-0-8218-1440-6
eBook: ISBN:  978-0-8218-9326-5
Product Code:  PSPUM/37.B
List Price: $274.00 $206.50
MAA Member Price: $246.60 $185.85
AMS Member Price: $219.20 $165.20
The Santa Cruz Conference on Finite Groups
Click above image for expanded view
The Santa Cruz Conference on Finite Groups
Hardcover ISBN:  978-0-8218-1440-6
Product Code:  PSPUM/37
List Price: $139.00
MAA Member Price: $125.10
AMS Member Price: $111.20
eBook ISBN:  978-0-8218-9326-5
Product Code:  PSPUM/37.E
List Price: $135.00
MAA Member Price: $121.50
AMS Member Price: $108.00
Hardcover ISBN:  978-0-8218-1440-6
eBook ISBN:  978-0-8218-9326-5
Product Code:  PSPUM/37.B
List Price: $274.00 $206.50
MAA Member Price: $246.60 $185.85
AMS Member Price: $219.20 $165.20
  • Book Details
     
     
    Proceedings of Symposia in Pure Mathematics
    Volume: 371981; 634 pp
    MSC: Primary 20
  • Table of Contents
     
     
    • Part I: Classification theory of simple finite groups
    • Daniel Gorenstein — An outline of the classification of finite simple groups [ MR 604552 ]
    • Michael Aschbacher — Groups of characteristic $2$-type [ MR 604553 ]
    • Richard Foote — Aschbacher blocks [ MR 604554 ]
    • Ronald Solomon — Some results on standard blocks [ MR 604555 ]
    • Richard Lyons — Signalizer functors in groups of characteristic $2$ type [ MR 604556 ]
    • John H. Walter — The $B$-conjecture: $2$-components in finite simple groups [ MR 604557 ]
    • Ronald Solomon — The maximal $2$-component approach to the $B(G)$ conjecture [ MR 604558 ]
    • Morton E. Harris — Finite groups having an involution centralizer with a $2$-component of dihedral type [ MR 604559 ]
    • Morton E. Harris — On Chevalley groups over fields of odd order, the unbalanced group conjecture and the $B(G)$-conjecture [ MR 604560 ]
    • Kensaku Gomi — Remarks on certain standard component problems and the unbalanced group conjecture [ MR 604561 ]
    • Robert Gilman — Odd standard components [ MR 604562 ]
    • Izumi Miyamoto — Standard subgroups of Chevalley type of rank $2$ and characteristic $2$ [ MR 604563 ]
    • Hiromichi Yamada — Standard subgroups of type $G_{2}(3)$ [ MR 604564 ]
    • Larry Finkelstein — Open standard form problems [ MR 604565 ]
    • F. Timmesfeld — Groups generated by a conjugacy class of involutions [ MR 604566 ]
    • Stephen D. Smith — The classification of finite groups with large extraspecial $2$-subgroups [ MR 604567 ]
    • Sergei Syskin, A. — Some characterization theorems [ MR 604568 ]
    • Bernd Stellmacher — On finite groups whose Sylow $2$-subgroups are contained in unique maximal subgroups [ MR 604569 ]
    • G. Stroth — Groups having a self-centralizing elementary abelian subgroup of order $16$ [ MR 604570 ]
    • George Glauberman — $p$-local subgroups [ MR 604571 ]
    • George Glauberman — Local analysis in the odd order paper
    • Michio Suzuki — Finite groups with a split $BN$-pair of rank one [ MR 604572 ]
    • Koichiro Harada — Finite groups of low $2$-rank, revisited [ MR 604573 ]
    • Geoffrey Mason — Quasithin groups [ MR 604574 ]
    • Part II: General theory of groups
    • Helmut Wielandt — Zusammengesetzte Gruppen: Hölders Programm heute [ MR 604575 ]
    • Walter Feit — Some consequences of the classification of finite simple groups [ MR 604576 ]
    • John McKay — Graphs, singularities, and finite groups [ MR 604577 ]
    • Hsio Fu Tuan — Works on finite group theory by some Chinese mathematicians [ MR 604578 ]
    • J. S. Williams — The prime graph components of finite groups [ MR 604579 ]
    • Zvi Arad and David Chillag — $\pi $-solvability and nilpotent Hall subgroups [ MR 604580 ]
    • Zvi Arad, Marcel Herzog and Ahiezer Shaki — On maximal subgroups with a nilpotent subgroup of index $2$ [ MR 604581 ]
    • Anthony Hughes — Automorphisms of nilpotent groups and supersolvable orders [ MR 604582 ]
    • A. R. Camina — A short survey of Fitting classes [ MR 604583 ]
    • Tomoyuki Yoshida — Transfer theorems [ MR 604584 ]
    • Gilbert Baumslag — Problem areas in infinite group theory for finite group theorists [ MR 604585 ]
    • L. G. Kovács — Classification theorems for torsion-free groups [ MR 604586 ]
    • Part III: Properties of the known groups
    • Gary M. Seitz — Properties of the known simple groups [ MR 604587 ]
    • Gary M. Seitz — The root groups of a maximal torus [ MR 604588 ]
    • B. Cooperstein — Geometry of long root subgroups in groups of Lie type [ MR 604589 ]
    • B. Cooperstein — $S$- and $F$-pairs for groups of Lie type in characteristic two [ MR 604590 ]
    • T. A. Springer — Geometric questions arising in the study of unipotent elements [ MR 604591 ]
    • Robert Steinberg — Kleinian singularities and unipotent elements [ MR 604592 ]
    • Simon Norton — The construction of $J_{4}$ [ MR 604593 ]
    • Robert L. Griess, Jr. — Schur multipliers of the known finite simple groups. II [ MR 604594 ]
    • M. A. Ronan and S. D. Smith — $2$-local geometries for some sporadic groups [ MR 604595 ]
    • Part IV: Representation theory of groups of Lie-type
    • Charles W. Curtis — Problems concerning characters of finite groups of Lie type [ MR 604596 ]
    • R. W. Carter — The relation between characteristic $0$ representations and characteristic $p$ representations of finite groups of Lie type [ MR 604597 ]
    • George Lusztig — Some problems in the representation theory of finite Chevalley groups [ MR 604598 ]
    • Leonard L. Scott — Representations in characteristic $p$ [ MR 604599 ]
    • Bhama Srinivasan — Characters of finite groups of Lie type. II [ MR 604600 ]
    • R. W. Kilmoyer — Principal series representations of finite groups with split $(BN)$-pairs [ MR 604601 ]
    • J. E. Humphreys — Cartan invariants and decomposition numbers of Chevalley groups [ MR 604602 ]
    • Dean Alvis — Duality in the character ring of a finite Chevalley group [ MR 604603 ]
    • Leonard Chastkofsky — Characters of projective indecomposable modules for finite Chevalley groups [ MR 604604 ]
    • N. B. Tinberg — Some indecomposable modules of groups with split $(B,\,N)$-pairs [ MR 604605 ]
    • Part V: Character theory of finite groups
    • J. L. Alperin — Local representation theory [ MR 604606 ]
    • I. M. Isaacs — Characters of solvable groups [ MR 604607 ]
    • Lluís Puig — Local block theory in $p$-solvable groups [ MR 604608 ]
    • Dilip Gajendragadkar — Characters of finite $\pi $-separable groups [ MR 604609 ]
    • Michel Broué — On characters of height zero [ MR 604610 ]
    • Harvey I. Blau — Brauer trees and character degrees [ MR 604611 ]
    • Everett C. Dade — A correspondence of characters [ MR 604612 ]
    • Walter Feit — Irreducible modules of $p$-solvable groups [ MR 604613 ]
    • Pamela A. Ferguson — Finite complex linear groups of degree less than $(2q+1)/3$ [ MR 604614 ]
    • Peter Landrock and Gerhard O. Michler — A criterion for cyclicity [ MR 604615 ]
    • David Gluck — A characterization of generalized permutation characters [ MR 604616 ]
    • Marcel Herzog — Character tables, trivial intersections and number of involutions [ MR 604617 ]
    • T. R. Berger — Representation theory and solvable groups: length type problems [ MR 604618 ]
    • Part VI: Combinatorics
    • Marshall Hall, Jr. — Group problems arising from combinatorics [ MR 604619 ]
    • Ernest Shult — Group-related geometries [ MR 604620 ]
    • Saeed Shad and Ernest Shult — Near $n$-gons [ MR 604621 ]
    • Eiichi Bannai — Orthogonal polynomials, algebraic combinatorics and spherical $t$-designs [ MR 604622 ]
    • T. G. Ostrom — Finite translation planes and group representation [ MR 604623 ]
    • Christoph Hering — Finite collineation groups of projective planes containing nontrivial perspectivities [ MR 604624 ]
    • William M. Kantor — Further problems concerning finite geometries and finite groups [ MR 604625 ]
    • Part VII: Computer applications
    • John J. Cannon — Effective procedures for the recognition of primitive groups [ MR 604626 ]
    • John J. Cannon — Software tools for group theory [ MR 604627 ]
    • Volkmar Felsch — The computation of a counterexample to the class-breadth conjecture for $p$-groups [ MR 604628 ]
    • David C. Hunt — A computer-based atlas of finite simple groups [ MR 604629 ]
    • Jeffrey S. Leon — Finding the order of a permutation group [ MR 604630 ]
    • Part VIII: Connections with number theory and other fields
    • A. P. Ogg — Modular functions [ MR 604631 ]
    • J. G. Thompson — A finiteness theorem for subgroups of $\mathrm {PSL}(2,\,\mathbf {R})$ which are commensurable with $\mathrm {PSL}(2,\,\mathbf {Z})$ [ MR 604632 ]
    • Paul Fong — Characters arising in the Monster-modular connection [ MR 604633 ]
    • Larissa Queen — Modular functions and finite simple groups [ MR 604634 ]
    • J. Lepowsky — Euclidean Lie algebras and the modular function $j$ [ MR 604635 ]
    • M. Fried — Exposition on an arithmetic-group theoretic connection via Riemann’s existence theorem [ MR 604636 ]
    • D. Husemoller — Burnside ring of a Galois group and the relations between zeta functions of intermediate fields [ MR 604637 ]
    • D. Husemoller — Finite automorphism groups of algebraic varieties [ MR 604638 ]
    • Ted Petrie — Transformation groups and representation theory [ MR 604639 ]
    • I. M. Isaacs — Lie algebras with nilpotent centralizers [ MR 604640 ]
  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 371981; 634 pp
MSC: Primary 20
  • Part I: Classification theory of simple finite groups
  • Daniel Gorenstein — An outline of the classification of finite simple groups [ MR 604552 ]
  • Michael Aschbacher — Groups of characteristic $2$-type [ MR 604553 ]
  • Richard Foote — Aschbacher blocks [ MR 604554 ]
  • Ronald Solomon — Some results on standard blocks [ MR 604555 ]
  • Richard Lyons — Signalizer functors in groups of characteristic $2$ type [ MR 604556 ]
  • John H. Walter — The $B$-conjecture: $2$-components in finite simple groups [ MR 604557 ]
  • Ronald Solomon — The maximal $2$-component approach to the $B(G)$ conjecture [ MR 604558 ]
  • Morton E. Harris — Finite groups having an involution centralizer with a $2$-component of dihedral type [ MR 604559 ]
  • Morton E. Harris — On Chevalley groups over fields of odd order, the unbalanced group conjecture and the $B(G)$-conjecture [ MR 604560 ]
  • Kensaku Gomi — Remarks on certain standard component problems and the unbalanced group conjecture [ MR 604561 ]
  • Robert Gilman — Odd standard components [ MR 604562 ]
  • Izumi Miyamoto — Standard subgroups of Chevalley type of rank $2$ and characteristic $2$ [ MR 604563 ]
  • Hiromichi Yamada — Standard subgroups of type $G_{2}(3)$ [ MR 604564 ]
  • Larry Finkelstein — Open standard form problems [ MR 604565 ]
  • F. Timmesfeld — Groups generated by a conjugacy class of involutions [ MR 604566 ]
  • Stephen D. Smith — The classification of finite groups with large extraspecial $2$-subgroups [ MR 604567 ]
  • Sergei Syskin, A. — Some characterization theorems [ MR 604568 ]
  • Bernd Stellmacher — On finite groups whose Sylow $2$-subgroups are contained in unique maximal subgroups [ MR 604569 ]
  • G. Stroth — Groups having a self-centralizing elementary abelian subgroup of order $16$ [ MR 604570 ]
  • George Glauberman — $p$-local subgroups [ MR 604571 ]
  • George Glauberman — Local analysis in the odd order paper
  • Michio Suzuki — Finite groups with a split $BN$-pair of rank one [ MR 604572 ]
  • Koichiro Harada — Finite groups of low $2$-rank, revisited [ MR 604573 ]
  • Geoffrey Mason — Quasithin groups [ MR 604574 ]
  • Part II: General theory of groups
  • Helmut Wielandt — Zusammengesetzte Gruppen: Hölders Programm heute [ MR 604575 ]
  • Walter Feit — Some consequences of the classification of finite simple groups [ MR 604576 ]
  • John McKay — Graphs, singularities, and finite groups [ MR 604577 ]
  • Hsio Fu Tuan — Works on finite group theory by some Chinese mathematicians [ MR 604578 ]
  • J. S. Williams — The prime graph components of finite groups [ MR 604579 ]
  • Zvi Arad and David Chillag — $\pi $-solvability and nilpotent Hall subgroups [ MR 604580 ]
  • Zvi Arad, Marcel Herzog and Ahiezer Shaki — On maximal subgroups with a nilpotent subgroup of index $2$ [ MR 604581 ]
  • Anthony Hughes — Automorphisms of nilpotent groups and supersolvable orders [ MR 604582 ]
  • A. R. Camina — A short survey of Fitting classes [ MR 604583 ]
  • Tomoyuki Yoshida — Transfer theorems [ MR 604584 ]
  • Gilbert Baumslag — Problem areas in infinite group theory for finite group theorists [ MR 604585 ]
  • L. G. Kovács — Classification theorems for torsion-free groups [ MR 604586 ]
  • Part III: Properties of the known groups
  • Gary M. Seitz — Properties of the known simple groups [ MR 604587 ]
  • Gary M. Seitz — The root groups of a maximal torus [ MR 604588 ]
  • B. Cooperstein — Geometry of long root subgroups in groups of Lie type [ MR 604589 ]
  • B. Cooperstein — $S$- and $F$-pairs for groups of Lie type in characteristic two [ MR 604590 ]
  • T. A. Springer — Geometric questions arising in the study of unipotent elements [ MR 604591 ]
  • Robert Steinberg — Kleinian singularities and unipotent elements [ MR 604592 ]
  • Simon Norton — The construction of $J_{4}$ [ MR 604593 ]
  • Robert L. Griess, Jr. — Schur multipliers of the known finite simple groups. II [ MR 604594 ]
  • M. A. Ronan and S. D. Smith — $2$-local geometries for some sporadic groups [ MR 604595 ]
  • Part IV: Representation theory of groups of Lie-type
  • Charles W. Curtis — Problems concerning characters of finite groups of Lie type [ MR 604596 ]
  • R. W. Carter — The relation between characteristic $0$ representations and characteristic $p$ representations of finite groups of Lie type [ MR 604597 ]
  • George Lusztig — Some problems in the representation theory of finite Chevalley groups [ MR 604598 ]
  • Leonard L. Scott — Representations in characteristic $p$ [ MR 604599 ]
  • Bhama Srinivasan — Characters of finite groups of Lie type. II [ MR 604600 ]
  • R. W. Kilmoyer — Principal series representations of finite groups with split $(BN)$-pairs [ MR 604601 ]
  • J. E. Humphreys — Cartan invariants and decomposition numbers of Chevalley groups [ MR 604602 ]
  • Dean Alvis — Duality in the character ring of a finite Chevalley group [ MR 604603 ]
  • Leonard Chastkofsky — Characters of projective indecomposable modules for finite Chevalley groups [ MR 604604 ]
  • N. B. Tinberg — Some indecomposable modules of groups with split $(B,\,N)$-pairs [ MR 604605 ]
  • Part V: Character theory of finite groups
  • J. L. Alperin — Local representation theory [ MR 604606 ]
  • I. M. Isaacs — Characters of solvable groups [ MR 604607 ]
  • Lluís Puig — Local block theory in $p$-solvable groups [ MR 604608 ]
  • Dilip Gajendragadkar — Characters of finite $\pi $-separable groups [ MR 604609 ]
  • Michel Broué — On characters of height zero [ MR 604610 ]
  • Harvey I. Blau — Brauer trees and character degrees [ MR 604611 ]
  • Everett C. Dade — A correspondence of characters [ MR 604612 ]
  • Walter Feit — Irreducible modules of $p$-solvable groups [ MR 604613 ]
  • Pamela A. Ferguson — Finite complex linear groups of degree less than $(2q+1)/3$ [ MR 604614 ]
  • Peter Landrock and Gerhard O. Michler — A criterion for cyclicity [ MR 604615 ]
  • David Gluck — A characterization of generalized permutation characters [ MR 604616 ]
  • Marcel Herzog — Character tables, trivial intersections and number of involutions [ MR 604617 ]
  • T. R. Berger — Representation theory and solvable groups: length type problems [ MR 604618 ]
  • Part VI: Combinatorics
  • Marshall Hall, Jr. — Group problems arising from combinatorics [ MR 604619 ]
  • Ernest Shult — Group-related geometries [ MR 604620 ]
  • Saeed Shad and Ernest Shult — Near $n$-gons [ MR 604621 ]
  • Eiichi Bannai — Orthogonal polynomials, algebraic combinatorics and spherical $t$-designs [ MR 604622 ]
  • T. G. Ostrom — Finite translation planes and group representation [ MR 604623 ]
  • Christoph Hering — Finite collineation groups of projective planes containing nontrivial perspectivities [ MR 604624 ]
  • William M. Kantor — Further problems concerning finite geometries and finite groups [ MR 604625 ]
  • Part VII: Computer applications
  • John J. Cannon — Effective procedures for the recognition of primitive groups [ MR 604626 ]
  • John J. Cannon — Software tools for group theory [ MR 604627 ]
  • Volkmar Felsch — The computation of a counterexample to the class-breadth conjecture for $p$-groups [ MR 604628 ]
  • David C. Hunt — A computer-based atlas of finite simple groups [ MR 604629 ]
  • Jeffrey S. Leon — Finding the order of a permutation group [ MR 604630 ]
  • Part VIII: Connections with number theory and other fields
  • A. P. Ogg — Modular functions [ MR 604631 ]
  • J. G. Thompson — A finiteness theorem for subgroups of $\mathrm {PSL}(2,\,\mathbf {R})$ which are commensurable with $\mathrm {PSL}(2,\,\mathbf {Z})$ [ MR 604632 ]
  • Paul Fong — Characters arising in the Monster-modular connection [ MR 604633 ]
  • Larissa Queen — Modular functions and finite simple groups [ MR 604634 ]
  • J. Lepowsky — Euclidean Lie algebras and the modular function $j$ [ MR 604635 ]
  • M. Fried — Exposition on an arithmetic-group theoretic connection via Riemann’s existence theorem [ MR 604636 ]
  • D. Husemoller — Burnside ring of a Galois group and the relations between zeta functions of intermediate fields [ MR 604637 ]
  • D. Husemoller — Finite automorphism groups of algebraic varieties [ MR 604638 ]
  • Ted Petrie — Transformation groups and representation theory [ MR 604639 ]
  • I. M. Isaacs — Lie algebras with nilpotent centralizers [ MR 604640 ]
Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.