20 TOM BRIDGELAND

[5] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of

polyvector ﬁelds, Internat. Math. Res. Notices 1998, no. 4, 201–215.

[6] S. Barannikov, Non-commutative periods and mirror symmetry in higher dimensions,

Comm. Math. Phys. 228 (2002), no. 2, 281–325.

[7] S. Benvenuti, A. Hanany and P. Kazakopoulos, The toric phases of the Y

p,q

quivers, J. High

Energy Phys. 2005, no. 7, 021.

[8] D. Berenstein and M. Douglas, Seiberg duality for quiver gauge theories, hep-th/0207027.

[9] A. Bondal and M. Kapranov, Enhanced triangulated categories, Math. USSR Sb. 70 (1991),

93-107.

[10] A. Bondal and A. Polishchuk, Homological properties of associative algebras: the method

of helices, Izv. Ross. Akad. Nauk. Ser. Mat. 57 (1993), no. 2, 3-50; transl. in Russian Acad.

Sci. Izv. Math. 42 (1994), no. 2, 219-260.

[11] S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection

functors. Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa,

Ont., 1979), pp. 103–169, Lecture Notes in Math., 832, Springer, Berlin-New York, 1980.

[12] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007),

no. 2, 317–345.

[13] T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), no. 2, 241–291.

[14] T. Bridgeland, T-structures on some local Calabi-Yau varieties, J. Algebra 289 (2005), no.

2, 453–483.

[15] T. Bridgeland, Stability conditions and Kleinian singularities, math.AG/0508257.

[16] T. Bridgeland, Stability conditions on a non-compact Calabi-Yau threefold, Comm. Math.

Phys. 266 (2006), no. 3, 715–733.

[17] T. Bridgeland, Derived categories of coherent sheaves, International Congress of Mathemati-

cians. Vol. II, 563–582, Eur. Math. Soc., Z¨ urich, 2006.

[18] T. Bridgeland and D. Stern, Helices on del Pezzo surfaces and tilting Calabi-Yau algebras,

to appear 2008.

[19] I. Burban and B. Kreussler, Derived categories of irreducible projective curves of arithmetic

genus one, math.AG/0503496.

[20] L. Chekhov, A. Marshakov, A. Mironov, D. Vasiliev, DV and WDVV, Phys. Lett. B 562

(2003), no. 3-4, 323–338.

[21] K. Costello, Topological conformal ﬁeld theories and Calabi-Yau categories, Adv. Math. 210

(2007), no. 1, 165–214.

[22] R. Dijkgraaf, S. Gukov, V. Kazakov and C. Vafa, Perturbative analysis of gauged matrix

models, Phys. Rev. D (3) 68 (2003), no. 4.

[23] M. Douglas, D-branes, categories and N = 1 supersymmetry. Strings, branes, and M-theory.

J. Math. Phys. 42 (2001), no. 7, 2818–2843.

[24] M. Douglas, Dirichlet branes, homological mirror symmetry, and stability, Proceedings of

the International Congress of Mathematicians, Vol. III (Beijing, 2002), 395–408, Higher Ed.

Press, Beijing, 2002.

[25] B. Dubrovin, Geometry and analytic theory of Frobenius manifolds, Proceedings of the

International Congress of Mathematicians, Vol. II (Berlin, 1998) Doc. Math. 1998.

[26] B. Dubrovin, Painlev´ e transcendents in two-dimensional topological ﬁeld theory, The

Painlev´ e property, 287–412, CRM Ser. Math. Phys., Springer, New York, 1999.

[27] B. Dubrovin, On almost duality for Frobenius manifolds, Geometry, topology, and mathe-

matical physics, 75–132, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence,

RI, 2004.

[28] B. Feng, A. Hanany, Y.-H. He and A. Iqbal, Quiver theories, soliton spectra and Picard-

Lefschetz transformations, J. High Energy Phys. 2003, no. 2, 056.

[29] S. Franco, A. Hanany and Y.-H. He, A trio of dualities: walls, trees and cascades, Pro-

ceedings of the 36th International Symposium Ahrenshoop on the Theory of Elementary

Particles. Fortschr. Phys. 52 (2004), no. 6-7, 540–547.

[30] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras,

Mem. Amer. Math. Soc. 120 (1996), no. 575.

[31] C. Herzog, Seiberg duality is an exceptional mutation, J. High Energy Phys. 2004, no. 8,

064.

[32] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003), no. 3, 281–308.

20