INTRODUCTION 11
References
[ABG10] M. Ando, A. Blumberg, and D. Gepner, Twists of K-theory and TMF, Superstrings,
geometry, topology, and
C∗-algebras,
27–63, Proc. Sympos. Pure Math., 81, Amer. Math.
Soc., Providence, RI (2010), [arXiv:1002.3004].
[AnSa11] M. Ando, H. Sati, M-brane charges and twisted tmf, in preparation.
[At88] M. Atiyah, Topological quantum field theories, Inst. Hautes
´
Etudes Sci. Publ. Math. 68
(1988), 175-186.
[BCSS07] J. Baez, A. Crans, U. Schreiber, and D. Stevenson, From loop groups to 2-groups,
Homology, Homotopy Appl. 9 (2007), 101–135, [arXiv:math/0504123].
[BaDo95] J. Baez and J. Dolan, Higher-dimensional algebra and topological quantum field theory,
J. Math. Phys 36 (1995), 6073–6105, [arXiv:q-alg/9503002].
[BaKi00] B. Bakalov and A. Kirillov, Lectures on tensor categories and modular functors, Uni-
versity Lecture Series, Amer. Math. Soc., Providence, RI (2000).
[BeDr04] A. Beilinson, V. Drinfeld, Chiral algebras, Amer. Math. Soc., Providence, RI (2004).
[BZFNa11] D. Ben-Zvi, J. Francis, and D. Nadler, Integral transforms and Drinfeld centers in
derived algebraic geometry, J. Amer. Math. Soc. 23 (2010), no. 4, 909–966, [arXiv:0805.0157].
[BMRZ08] J. Brodzki, V. Mathai, J. Rosenberg, and R. J. Szabo, D-branes, RR-fields and
duality on noncommutative manifolds, Commun. Math. Phys. 277 (2008), 643–706,
[arXiv:hep-th/0607020].
[BDF09] R. Brunetti, M. utsch, and K. Fredenhagen, Perturbative algebraic quantum field
theory and the renormalization groups, Adv. Theor. Math. Physics 13 (2009), 1541–1599,
[arXiv:0901.2038].
[BFV01] R. Brunetti, K. Fredenhagen, and R. Verch, The generally covariant locality principle
a new paradigm for local quantum field theory, Commun. Math. Phys. 237 (2001), 31–68,
[arXiv:math-ph/0112041].
[Bu09] U. Bunke, String structures and trivialisations of a Pfaffian line bundle, preprint,
[arXiv:0909.0846].
[BuSch11] U. Bunke and T. Schick, Differential K-theory: A survey, preprint, [arXiv:1011.6663].
[CoKr00] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-
Hilbert problem I: the Hopf algebra structure of graphs and the main theorem, Commun. Math.
Phys. 210 (2000), 249–273, [arXiv:hep-th/9912092].
[Cos07a] K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math.
210 (2007), 165–214, [arXiv:math/0412149].
[Cos07b] K. Costello, Topological conformal field theories and gauge theories, Geom. Top. 11
(2007), 1539–1579, [arXiv:math/0605647].
[CoGw] K. Costello and O. Gwilliam, Factorization algebras in perturbative quantum field theory,
preprint, [http://math.northwestern.edu/~costello/factorization_public.html].
[DSS11] C. Douglas, C. Schommer-Pries, and N. Snyder, The Structure of Fusion Categories via
3D TQFTs, preprint (2011), [http://ncatlab.org/nlab/files/DSSFusionSlides.pdf].
[Do10] M.R. Douglas, Spaces of quantum field theories, Open Access Journal of Physics: Confer-
ence Series, Institute of Physics Publishing, [arXiv:1005.2779].
[FSS11] D. Fiorenza, U. Schreiber, and J. Stasheff,
ˇ
Cech cocycles for differential characteristic
classes– An ∞-Lie theoretic construction, preprint, [arXiv:1011.4735].
[Fre01] D. Freed, Dirac charge quantization and generalized differential cohomology, in Surv. Diff.
Geom. VII, 129–194, Int. Press, Somerville, MA (2000), [arXiv:hep-th/0011220].
[Fre06] D. Freed, Twisted K-theory and the Verlinde ring, Andrejewski Lecture, Leipzig (2006),
[http://www.ma.utexas.edu/users/dafr/Andrejewski%20Lectures.html].
[FrHo00] D. Freed and M. Hopkins, On Ramond-Ramond fields and K-theory, J. High Energy
Phys. 5 (2000), 44, [arXiv:hep-th/0002027].
[FHLT10] D. Freed, M. Hopkins, J. Lurie, and C. Teleman, Topological quantum field theories
from compact Lie groups, A celebration of the mathematical legacy of Raoul Bott, 367–403,
Amer. Math. Soc., Providence, RI (2010), [arXiv:0905.0731].
[FrQu93] D. Freed and F. Quinn, Chern-Simons theory with finite gauge group, Commun. Math.
Phys. 156 (1993), 435–472, [arXiv:hep-th/9111004].
[FrRe11] K. Fredenhagen and K. Rejzner, Batalin-Vilkovisky formalism in the functional approach
to classical field theory, preprint, [arXiv:1101.5112].
11
Previous Page Next Page