[FNSW09] J. Fuchs, T. Nikolaus, C. Schweigert, and K. Waldorf, Bundle gerbes and surface
holonomy, Proceedings of the Fifth European Congress of Mathematics, Amsterdam (2008),
[FRS06] J. Fuchs, I. Runkel, and C. Schweigert, Categorification and correlation functions in con-
formal field theory, Proceedings of the ICM 2006, European Mathematical Society Publishing
House (2007), [arXiv:math.CT/0602079].
[GaRe02] C. Gaw¸edzki and N. Reis, WZW branes and gerbes, Rev. Math. Phys. 14 (2002) 1281–
1334, [arXiv:hep-th/0205233].
[Go07] V. Godin, Higher string topology operations, (2007), preprint, [arXiv:0711.4859].
[Ha92] R. Haag, Local quantum physics Fields, particles, algebras, Springer, Berlin, 1992.
[HaKa64] R. Haag, D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5
(1964), 848–861.
[HaM¨u06] H. Halvorson (with an appendix by M. uger), Algebraic quantum field theory, in
Philosophy of Physics, North Holland (2006), [arXiv:math-ph/0602036].
[Hen08] A. Henriques, Integrating L∞-algebras, Compos. Math. 144 (2008), 1017–1045,
[HS05] M. Hopkins and I. Singer, Quadratic functions in geometry, topology, and M-theory, , J.
Differential Geom. 70 (2005), 329–452, [arXiv:math/0211216].
[Ka06] S. Katz, Enumerative geometry and string theory, Amer. Math. Soc., Providence, RI
[Ka03] Y. Kawahigashi, Classification of operator algebraic conformal field theories in dimensions
one and two, Proceedings of XIV International Congress on Mathematical Physics, J.-C. Zam-
brini (ed.), World Scientific, Singapore (2006), [arXiv:math-ph/0308029].
[KaLo03] Y. Kawahigashi and R. Longo, Classification of Local Conformal Nets. Case c 1,
Ann. Math. 160 (2004), 493–522, [arXiv:math-ph/0201015].
[Ko95] M. Kontsevich, Homological algebra of mirror symmetry, in Proceedings of the Interna-
tional Congress of Mathematicians, (Z¨urich, 1994), pages 120–139, Basel, Birkh¨ auser (1995),
[Ku11] A. P. M. Kupers, String topology operations, MSc thesis, Utrecht University, The
Netherlands (2011),
[Le06] G. Lechner, Construction of quantum field theories with factorizing S-matrices, Commun.
Math. Phys. 277 (2008), 821–860, [arXiv:math-ph/0601022].
[LoRe04] R. Longo,K.-H. Rehren, Local fields in boundary conformal QFT, Rev. Math. Phys. 16
(2004), 909–960, [arXiv:math-ph/0405067].
[LoWi10] R. Longo and E. Witten, An Algebraic construction of boundary quantum field theory,
Commun. Math. Phys. 303 (2011), 213–232, [arXiv:1004.0616].
[Lur09a] J. Lurie, Structured Spaces, preprint, [arXiv:0905.0459].
[Lur09b] J. Lurie On the classification of topological field theories, Current developments in math-
ematics, 2008, 129–280, Int. Press, Somerville, MA (2009), [arXiv:0905.0465].
[Lur11] J. Lurie, Higher Algebra, preprint (2011),
[MaPo07] J. Martins and T. Porter, On Yetter invariants and an extension of the Dijkgraaf-
Witten invariant to categorical groups, Theory Appl. Categ. 18 (2007), 118–150,
[MoWi00] G. Moore and E. Witten, Self-duality, Ramond-Ramond fields, and K-theory, J. High
Energy Phys. 0005 (2000) 032, [arXiv:hep-th/9912279].
[MoSe06] G. Moore and G. Segal, D-branes and K-theory in 2D topological field theory, preprint
(2006), [arXiv:hep-th/0609042].
[Ni11] T. Nikolaus, Higher categorical structures in QFT General the-
ory and applications to QFT, PhD thesis, Hamburg University (2011),
[Sa10] H. Sati, Geometric and topological structures related to M-branes, Proc. Symp. Pure Math.
81 (2010), 181–236, [arXiv:1001.5020].
[SSS10] H. Sati, U. Schreiber, and J. Stasheff, Twisted differential String- and Fivebrane struc-
tures, preprint (2009), [arXiv:0910.4001].
[Se04] G. Segal, The definition of conformal field theory, in Topology, Geometry and Quantum
Field Theory, 421–577, U. Tillmann (ed.), Cambridge University Press, Cambridge (2004).
Previous Page Next Page