Introduction to Topology

V. A. Vassiliev

Translated by A. Sossinski
Contents

Foreword xi

Chapter 1. Topological spaces and operations with them 1
§1.1. Topological spaces and homeomorphisms 1
§1.2. Topological operations on topological spaces 4
§1.3. Compactness. 7

Chapter 2. Homotopy groups and homotopy equivalence 9
§2.1. The fundamental group of a topological space 10
§2.2. Higher homotopy groups 12

Chapter 3. Coverings 21

Chapter 4. Cell spaces (CW-complexes) 25
§4.1. Definition and main properties of cell spaces 26
§4.2. Classification of coverings 31

Chapter 5. Relative homotopy groups and the exact sequence of a pair 35

Chapter 6. Fiber bundles 41
§6.1. Locally trivial bundles 41
§6.2. The exact sequence of a fiber bundle 46

Chapter 7. Smooth manifolds 49
§7.1. Smooth structures 50
§7.2. Orientations 52
§7.3. Tangent bundles over smooth manifolds 53
§7.4. Riemannian structures 55

Chapter 8. The degree of a map 59
§8.1. Critical sets of smooth maps 59
§8.2. The degree of a map 60
§8.3. The classification of maps $M^n \to S^n$ 63
§8.4. The index of a vector field 66

Chapter 9. Homology: Basic definitions and examples 69
§9.1. Chain complexes and their homology 69
§9.2. Simplicial homology of simplicial polyhedra 71
§9.3. Maps of complexes 78
§9.4. Singular homology 79

Chapter 10. Main properties of singular homology groups and their computation 83
§10.1. Homology of the point 83
§10.2. The exact sequence of a pair 84
§10.3. The exact sequence of a triple 88
§10.4. Homology of suspensions 89
§10.5. The Mayer–Vietoris sequence 90
§10.6. Homology of wedges 92
Contents

§10.7. Functoriality of homology 92
§10.8. Summary 93

Chapter 11. Homology of cell spaces 95
§11.1. Cellular complexes 95
§11.2. Example: homology of projective spaces 97
§11.3. Cell decomposition of Grassmann manifolds 98

Chapter 12. Morse theory 103
§12.1. Morse functions 103
§12.2. The cellular structure of a manifold endowed with a Morse function 104
§12.3. Attaching handles 106
§12.4. Regular Morse functions 106
§12.5. The boundary operator in a Morse complex 110
§12.6. Morse inequalities 114
§12.7. Standard bifurcations of Morse functions 115

Chapter 13. Cohomology and Poincaré duality 119
§13.1. Cohomology 119
§13.2. Poincaré duality for manifolds without boundary 122
§13.3. Manifolds with boundary and noncompact manifolds 124
§13.4. Nonorientable manifolds 125
§13.5. Alexander duality 126

Chapter 14. Some applications of homology theory 129
§14.1. The Hopf invariant 129
§14.2. The degree of a map 131
§14.3. The total index of a vector field equals the Euler characteristic 132
Chapter 15. Multiplication in cohomology (and homology) 137

§15.1. Homology and cohomology groups of a Cartesian product 137

§15.2. Multiplication in cohomology 140

§15.3. Examples of multiplication in cohomology and its geometric meaning 142

§15.4. Main properties of multiplication in cohomology 143

§15.5. Connection with the de Rham cohomology 144

§15.6. Pontryagin multiplication 144

Index of Notations 145

Subject Index 147
Foreword

This book arose from lecture notes of a course given to first and second year students at the Independent University of Moscow.

Topology is a very beautiful science. It is the bridge between geometry and algebra. Its ideas and images play a key role in almost all of modern mathematics: in differential equations, mechanics, complex analysis, algebraic geometry, functional analysis, mathematical and quantum physics, representation theory, and even—in a surprisingly modified form—in number theory, combinatorics, and complexity theory.

In recent years most of the new ideas in mathematics arose in topology from geometrical images and were then formalized and carried over to more algebraic fields. For this reason a sound knowledge of topology is necessary to any research mathematician. Unfortunately, in Russia and many other countries, topology is not included, even today, in the basic curriculum of mathematical departments in most universities. Serious teachers of the other disciplines must include various fragments of topology in their courses, but the student who studies Stokes’ formula in the calculus, the argument principle and Riemann surfaces in complex analysis, the principle of contracting maps and the index of singular points of vector fields in differential equations, the Euler characteristic in combinatorics, stable regime
Theorems in optimal control theory, and fixed point theorems in mathematical economics, usually does not understand that he/she is essentially studying the same things. And the student is led to studying basic topology individually. (An exceptional event, which apparently had a crucial influence on my generation of Moscow mathematicians and, undoubtedly, on my own mathematical education, was the special (i.e., nonobligatory) topology course given by D. B. Fuchs at the Mechanics and Mathematics Department of Moscow State University in 1976–77.)

For several years (in the late 80s and the early 90s), I gave informal introductory topology courses for undergraduates and high school students at specialized math schools. I would like to thank the administration of the Independent University of Moscow for the opportunity to give this course as part of the basic curriculum to IUM students in the second and third semesters in 1996.

I am also extremely grateful to V. V. Prasolov, who took down the lecture notes and carried out their initial editing, and to the director of Phasis Publishers, V. V. Filippov, for his initiative and support in their publication.

The lecture note origins of the book left a significant imprint on its style. It contains very few detailed proofs; I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs. As a rule, only those proofs (or sketches of proofs) that are interesting per se and have important generalizations are presented.

In conclusion, here is a list of suggested references.

Foreword

Books [1–4] provide a basis for topological geometric intuition; they are recommended as preliminary reading.

Chapters 1 and 2 of [5] cover such topics as homotopy groups, homotopy theory of cellular spaces, and basic (co)homology theory. The book [8] provides an introduction to smooth manifold theory, a nice explanation of Morse theory is contained in [9 and 10]. The book [6] is not easy reading for beginners and we recommend it with care; however, it can serve as an exhaustive handbook and dictionary for all topics studied in the first half of our book, and [7] helps in those rare cases when [6] is insufficient. The book [11] is one of the world’s best textbooks in algebraic topology, and I hope that the reader will be able to handle it. Finally, [12] is a nice and very wide survey of the modern state of topology.