Contents

Preface xi

Chapter 1. Combinatorial Games 1
 §1.1. Game Trees 3
 §1.2. Zermelo's Theorem 9
 §1.3. Strategy 14
 Exercises 19

Chapter 2. Normal-Play Games 25
 §2.1. Positions and Their Types 27
 §2.2. Sums of Positions 30
 §2.3. Equivalence 36
 Exercises 41

Chapter 3. Impartial Games 45
 §3.1. Nim 46
 §3.2. The Sprague-Grundy Theorem 52
 §3.3. Applying the MEX Principle 54
 Exercises 59
Chapter 4. Hackenbush and Partizan Games 63
§4.1. Hackenbush 64
§4.2. Dyadic Numbers and Positions 71
§4.3. The Simplicity Principle 77
Exercises 83

Chapter 5. Zero-Sum Matrix Games 89
§5.1. Dominance 91
§5.2. Mixed Strategies 95
§5.3. Von Neumann Solutions 100
Exercises 104

Chapter 6. Von Neumann's Minimax Theorem 111
§6.1. Equating the Opponent's Results 113
§6.2. Two-Dimensional Games 118
§6.3. Proof of the Minimax Theorem 123
Exercises 128

Chapter 7. General Games 133
§7.1. Utility 135
§7.2. Matrix Games 139
§7.3. Game Trees 145
§7.4. Trees vs. Matrices 150
Exercises 155

Chapter 8. Nash Equilibrium and Applications 161
§8.1. Nash Equilibrium 162
§8.2. Evolutionary Biology 169
§8.3. Cournot Duopoly 176
Exercises 182

Chapter 9. Nash's Equilibrium Theorem 187
§9.1. Sperner's Lemma 189
§9.2. Brouwer's Fixed Point Theorem 192
Contents

§9.3. Strategy Spaces 198
§9.4. Nash Flow and the Proof 202
Exercises 208

Chapter 10. Cooperation 213
§10.1. The Negotiation Set 214
§10.2. Nash Arbitration 221
§10.3. Repeated Games and the Folk Theorem 228
Exercises 238

Chapter 11. n-Player Games 245
§11.1. Matrix Games 247
§11.2. Coalitions 251
§11.3. Shapley Value 260
Exercises 270

Chapter 12. Preferences and Society 275
§12.1. Fair Division 277
§12.2. Stable Marriages 285
§12.3. Arrow’s Impossibility Theorem 290
Exercises 298

Appendix A. On Games and Numbers 301

Appendix B. Linear Programming 309
Basic Theory 310
A Connection to Game Theory 313
LP Duality 317

Appendix C. Nash Equilibrium in High Dimensions 323

Game Boards 331
Bibliography 335
Index of Games 339
Index 341