vi CONTENTS
Chapter 4. Loewner differential equation 91
4.1. Chordal Loewner equation 91
4.2. Radial Loewner equation 97
4.3. Whole-plane Loewner equation 100
4.4. Chains generated by curves 104
4.5. Distance to the curve 108
4.6. Perturbation by conformal maps 109
4.7. Convergence of Loewner chains 114
Chapter 5. Brownian measures on paths 119
5.1. Measures on spaces of curves 119
5.2. Brownian measures on /C 123
5.3. H-excursions 130
5.4. One-dimensional excursion measure 135
5.5. Boundary bubbles 137
5.6. Loop measure 141
5.7. Brownian loop soup 144
Chapter 6. Schramm-Loewner evolution 147
6.1. Chordal SLE 147
6.2. Phases 150
6.3. The locality property for K 6 152
6.4. The restriction property for K = 8/3 153
6.5. Radial SLE 156
6.6. Whole-plane SLEK 162
6.7. Cardy's formula 163
6.8. SLEQ in an equilateral triangle 167
6.9. Derivative estimates 169
6.10. Crossing exponent for SLEQ 171
6.11. Derivative estimates, radial case 174
Chapter 7. More results about SLE 111
7.1. Introduction 177
7.2. The existence of the path 181
7.3. Holder continuity 182
7.4. Dimension of the path 183
Chapter 8. Brownian intersection exponent 187
8.1. Dimension of exceptional sets 187
8.2. Subadditivity 190
8.3. Half-plane or rectangle exponent 191
8.4. Whole-plane or annulus exponent 200
Chapter 9. Restriction measures 205
9.1. Unbounded hulls in M 205
9.2. Right-restriction measures 209
9.3. The boundary of restriction hulls 211
9.4. Constructing restriction measures 213
Appendix A. Hausdorff dimension 217
Previous Page Next Page