Contents

Traces of Hecke Operators
1. Introduction 1
2. The Arthur-Selberg trace formula for GL(2) 3
3. Cusp forms and Hecke operators 7
 3.1. Congruence subgroups of \(SL_2(\mathbb{Z}) \) 7
 3.2. Weak modular forms 10
 3.3. Cusps and Fourier expansions of modular forms 12
 3.4. Hecke rings 20
 3.5. The level \(N \) Hecke ring 24
 3.6. The elements \(T(n) \) 29
 3.7. Hecke operators 34
 3.8. The Petersson inner product 37
 3.9. Adjoints of Hecke operators 42
 3.10. Traces of the Hecke operators 45

Odds and Ends
4. Topological groups 49
5. Adeles and ideles 52
 5.1. \(p \)-adic Numbers 52
 5.2. Adeles and ideles 54
6. Structure theorems and strong approximation for \(GL_2(\mathbb{A}) \) 59
 6.1. Topology of \(GL_2(\mathbb{A}) \) 59
 6.2. The Iwasawa decomposition 61
 6.3. Strong approximation for \(GL_2(\mathbb{A}) \) 63
 6.4. The Cartan decomposition 66
 6.5. The Bruhat decomposition 69
7. Haar measure 69
 7.1. Basic properties of Haar measure 69
 7.2. Invariant measure on a quotient space 74
 7.3. Haar measure on a restricted direct product 82
 7.4. Haar measure on the adeles and ideles 85
 7.5. Haar measure on \(B \) 87
 7.6. Haar measure on \(GL(2) \) 90
 7.7. Haar measure on \(SL_2(\mathbb{R}) \) 92
 7.8. Haar measure on \(GL(2) \) 94
 7.9. Discrete subgroups and fundamental domains 95
 7.10. Haar measure on \(Q \backslash \mathbb{A} \) and \(Q^* \backslash \mathbb{A}^* \) 102
 7.11. Quotient measure on \(GL_2(\mathbb{Q}) \backslash GL_2(\mathbb{A}) \) 103
 7.12. Quotient measure on \(B(\mathbb{Q}) \backslash G(\mathbb{A}) \) 105
8. The Poisson summation formula 108
9. Tate zeta functions 119
 9.1. Definition and meromorphic continuation 119
 9.2. Functional equation and behavior at $s = 1$ 124
10. Intertwining operators and matrix coefficients 128
 10.1. Linear algebra 129
 10.2. Representation theory 134
 10.3. Orthogonality of matrix coefficients 140
11. The discrete series of $GL_2(\mathbb{R})$ 151
 11.1. K-type decompositions 151
 11.2. Representations of $O(2)$ 155
 11.3. K-type decomposition of an induced representation 156
 11.4. The (\mathfrak{g}, K)-modules $(V_{\chi})_K$ 162
 11.5. Classification of irreducible (\mathfrak{g}, K)-modules for $GL_2(\mathbb{R})$ 165
 11.6. A detailed look at the Lie algebra action 181
 11.7. Characterization of the weight k discrete series of $GL_2(\mathbb{R})$ 186

Groundwork
12. Cusp forms as elements of $L^2_0(\omega)$ 195
 12.1. From Dirichlet characters to Hecke characters 195
 12.2. From cusp forms to functions on $G(\mathbb{A})$ 197
 12.3. Comparison of classical and adelic Fourier coefficients 198
 12.4. Characterizing the image of $S_k(N, \omega')$ in $L^2_0(\omega)$ 201
13. Construction of the test function f 206
 13.1. The non-archimedean component of f 206
 13.2. Spectral properties of $R(f)$ 213
14. Explicit computations for f_k and f_∞ 221

The Trace Formula
15. Introduction to the trace formula for $R(f)$ 227
16. Terms that contribute to $K(x, y)$ 230
17. Truncation of the kernel 231
18. Bounds for $\sum_{\gamma} |f(g_1^{-1}g_2)|$ 240
19. Integrability of $k_T^\mathfrak{c}(g)$ 248
20. The hyperbolic terms as weighted orbital integrals 259
21. Simplifying the unipotent term 270
22. The trace formula 276

Computation of the Trace
23. The identity term 279
24. The hyperbolic terms 280
 24.1. A lemma about orbital integrals 280
 24.2. The archimedean orbital integral and weighted orbital integral 281
 24.3. Simplification of the hyperbolic term 283
 24.4. Calculation of the local orbital integrals 283
 24.5. The global hyperbolic result 286
25. The unipotent term 288
 25.1. Explicit evaluation of the zeta integral at ∞ 288
 25.2. Computation of the non-archimedean local zeta functions 291