Contents

Preface xi

Acknowledgments xiii

Part 1. Systolic geometry in dimension 2 1

Chapter 1. Geometry and topology of systoles 3
 1.1. From Loewner to Gromov via Berger 3
 1.2. Contents of Part 1 6
 1.3. Contents of Part 2 7

Chapter 2. Historical remarks 13
 2.1. A la recherche des systoles, by Marcel Berger 13
 2.2. Charles Loewner (1893-1968) 14
 2.3. Pu, Pao Ming (1910-1988) 19
 2.4. A note to the reader 19

Chapter 3. The theorema egregium of Gauss 21
 3.1. Intrinsic vs extrinsic properties 21
 3.2. Preliminaries to the theorema egregium 22
 3.3. The theorema egregium of Gauss 24
 3.4. The Laplacian formula for Gaussian curvature 25

Chapter 4. Global geometry of surfaces 29
 4.1. Metric preliminaries 29
 4.2. Geodesic equation and closed geodesics 32
 4.3. Surfaces of constant curvature 33
 4.4. Flat surfaces 35
 4.5. Hyperbolic surfaces 35
 4.6. Topological preliminaries 37

Chapter 5. Inequalities of Loewner and Pu 39
 5.1. Definition of systole 39
 5.2. Isoperimetric inequality and Pu’s inequality 39
 5.3. Hermite and Bergé-Martinet constants 41
 5.4. The Loewner inequality 42

Chapter 6. Systolic applications of integral geometry 43
 6.1. An integral-geometric identity 43
 6.2. Two proofs of the Loewner inequality 44
 6.3. Hopf fibration and the Hamilton quaternions 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Double fibration of $SO(3)$ and integral geometry on S^2</td>
<td>46</td>
</tr>
<tr>
<td>6.5</td>
<td>Proof of Pu’s inequality</td>
<td>48</td>
</tr>
<tr>
<td>6.6</td>
<td>A table of optimal systolic ratios of surfaces</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chapter 7. A primer on surfaces</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Hyperelliptic involution</td>
<td>51</td>
</tr>
<tr>
<td>7.2</td>
<td>Hyperelliptic surfaces</td>
<td>51</td>
</tr>
<tr>
<td>7.3</td>
<td>Ovalless surfaces</td>
<td>52</td>
</tr>
<tr>
<td>7.4</td>
<td>Katok’s entropy inequality</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Chapter 8. Filling area theorem for hyperelliptic surfaces</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>To fill a circle: an introduction</td>
<td>57</td>
</tr>
<tr>
<td>8.2</td>
<td>Relative Pu’s way</td>
<td>59</td>
</tr>
<tr>
<td>8.3</td>
<td>Outline of proof of optimal displacement bound</td>
<td>60</td>
</tr>
<tr>
<td>8.4</td>
<td>Near optimal surfaces and the football</td>
<td>61</td>
</tr>
<tr>
<td>8.5</td>
<td>Finding a short figure eight geodesic</td>
<td>63</td>
</tr>
<tr>
<td>8.6</td>
<td>Proof of circle filling: Step 1</td>
<td>63</td>
</tr>
<tr>
<td>8.7</td>
<td>Proof of circle filling: Step 2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Chapter 9. Hyperelliptic surfaces are Loewner</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Hermite constant and Loewner surfaces</td>
<td>69</td>
</tr>
<tr>
<td>9.2</td>
<td>Basic estimates</td>
<td>69</td>
</tr>
<tr>
<td>9.3</td>
<td>Hyperelliptic surfaces and ε-regularity</td>
<td>70</td>
</tr>
<tr>
<td>9.4</td>
<td>Proof of the genus two Loewner bound</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Chapter 10. An optimal inequality for CAT(0) metrics</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Hyperelliptic surfaces of nonpositive curvature</td>
<td>75</td>
</tr>
<tr>
<td>10.2</td>
<td>Distinguishing 16 points on the Bolza surface</td>
<td>75</td>
</tr>
<tr>
<td>10.3</td>
<td>A flat singular metric in genus two</td>
<td>76</td>
</tr>
<tr>
<td>10.4</td>
<td>Voronoi cells and Euler characteristic</td>
<td>77</td>
</tr>
<tr>
<td>10.5</td>
<td>Arbitrary metrics on the Bolza surface</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Chapter 11. Volume entropy and asymptotic upper bounds</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Entropy and systole</td>
<td>85</td>
</tr>
<tr>
<td>11.2</td>
<td>Basic estimate</td>
<td>85</td>
</tr>
<tr>
<td>11.3</td>
<td>Asymptotic behavior of systolic ratio for large genus</td>
<td>86</td>
</tr>
<tr>
<td>11.4</td>
<td>When is a surface Loewner?</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Part 2. Systolic geometry and topology in n dimensions</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Chapter 12. Systoles and their category</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Systoles</td>
<td>93</td>
</tr>
<tr>
<td>12.2</td>
<td>Gromov’s spectacular inequality for the 1-systole</td>
<td>93</td>
</tr>
<tr>
<td>12.3</td>
<td>Systolic category</td>
<td>95</td>
</tr>
<tr>
<td>12.4</td>
<td>Some examples and questions</td>
<td>97</td>
</tr>
<tr>
<td>12.5</td>
<td>Essentialness and Lusternik–Schnirelmann category</td>
<td>99</td>
</tr>
<tr>
<td>12.6</td>
<td>Inessential manifolds and pullback metrics</td>
<td>100</td>
</tr>
<tr>
<td>12.7</td>
<td>Manifolds of dimension 3</td>
<td>101</td>
</tr>
<tr>
<td>12.8</td>
<td>Category of simply connected manifolds</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Chapter 13. Gromov’s optimal stable systolic inequality for \mathbb{CP}^n</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
</tr>
</tbody>
</table>
CONTENTS

13.1. Federer’s proof of the Wirtinger inequality 107
13.2. Optimal inequality for complex projective space 108
13.3. Quaternionic projective plane 110

Chapter 14. Systolic inequalities dependent on Massey products 113
14.1. Massey Products via Differential Graded Associative Algebras 113
14.2. Integrality of de Rham Massey products 115
14.3. Gromov’s calculation in the presence of a Massey 116
14.4. A homogeneous example 118

Chapter 15. Cup products and stable systoles 119
15.1. Introduction 119
15.2. Statement of main results 120
15.3. Results for the conformal systole 122
15.4. Some topological preliminaries 124
15.5. Ring structure-dependent bound via Banaszczyk 125
15.6. Inequalities based on cap products, Poincaré duality 127
15.7. A sharp inequality in codimension 1 129
15.8. A conformally invariant inequality in middle dimension 130
15.9. A pair of conformal systoles 130
15.10. A sublinear estimate for a single systole 133

Chapter 16. Dual-critical lattices and systoles 135
16.1. Introduction 135
16.2. Statement of main theorems 135
16.3. Norms on (co-)homology 137
16.4. Definition of conformal systoles 138
16.5. Jacobi variety and Abel-Jacobi map 139
16.6. Summary of the proofs 140
16.7. Harmonic one-forms of constant norm and flat tori 141
16.8. Norm duality and the cup product 144
16.9. Hölder inequality in cohomology and case of equality 146
16.10. Proof of optimal \((1, n−1)\)-inequality 147
16.11. Consequences of equality, criterion of dual-perfection 148
16.12. Characterisation of equality in \((1, n−1)\)-inequality 149
16.13. Construction of all extremal metrics 151

Chapter 17. Generalized degree and Loewner-type inequalities 155
17.1. Burago-Ivanov-Gromov inequality 155
17.2. Generalized degree and \(\text{BIG}(n, b)\) inequality 156
17.3. Pu’s inequality and generalisations 157
17.4. A Pu times Loewner inequality 158
17.5. A decomposition of the John ellipsoid 159
17.6. An area-nonexpanding map 159
17.7. Proof of \(\text{BIG}(n, b)\)-inequality and Theorem 17.4.1 161

Chapter 18. Higher inequalities of Loewner-Gromov type 163
18.1. Introduction, conjectures, and some results 163
18.2. Notion of degree when dimension exceeds Betti number 164
18.3. Conformal BIG\((n, p)\)-inequality 166
18.4. Stable norms and conformal norms 168
18.5. Existence of \(L^p\)-minimizers in cohomology classes 169
18.6. Existence of harmonic forms with constant norm 171
18.7. The BI construction adapted to conformal norms 173
18.8. Abel-Jacobi map for conformal norms 174
18.9. Attaining the conformal BIG bound 174

Chapter 19. Systolic inequalities for \(L^p\) norms 177
19.1. Case \(n \geq b\) and \(L^p\) norms in homology 177
19.2. The BI construction in the case \(n \geq b\) 178
19.3. Proof of bound on orthogonal Jacobian 178
19.4. Attaining the conformal BIG\((n, b)\) bound 180

Chapter 20. Four-manifold systole asymptotics 181
20.1. Schottky problem and the surjectivity conjecture 181
20.2. Conway-Thompson lattices \(CT_n\) and idea of proof 183
20.3. Norms in cohomology 183
20.4. Conformal length and systolic flavors 184
20.5. Systoles of definite intersection forms 185
20.6. Buser-Sarnak theorem 186
20.7. Sign reversal procedure SR and \(\text{Aut}(I_{n,1})\)-invariance 186
20.8. Lorentz construction of Leech lattice and line \(CT_n^\perp\) 187
20.9. Three quadratic forms in the plane 189
20.10. Replacing \(\lambda_1\) by the geometric mean \((\lambda_1\lambda_2)^{1/2}\) 190
20.11. Period map and proof of main theorem 192

Appendix A. Period map image density (by Jake Solomon) 195
A.1. Introduction and outline of proof 195
A.2. Symplectic forms and the self-dual line 196
A.3. A lemma from hyperbolic geometry 197
A.4. Diffeomorphism group of blow-up of projective plane 198
A.5. Background material from symplectic geometry 199
A.6. Proof of density of image of period map 201

Appendix B. Open problems 205
B.1. Topology 205
B.2. Geometry 206
B.3. Arithmetic 206

Bibliography 209

Index 221