Contents

Preface vii

Part 1. Background 1

Chapter 1. Cartan geometries 3
 1.1. Prologue — a few examples of homogeneous spaces 4
 1.2. Some background from differential geometry 15
 1.3. A survey on connections 35
 1.4. Geometry of homogeneous spaces 49
 1.5. Cartan connections 70
 1.6. Conformal Riemannian structures 112

Chapter 2. Semisimple Lie algebras and Lie groups 141
 2.1. Basic structure theory of Lie algebras 141
 2.2. Complex semisimple Lie algebras and their representations 160
 2.3. Real semisimple Lie algebras and their representations 199

Part 2. General theory 231

Chapter 3. Parabolic geometries 233
 3.1. Underlying structures and normalization 234
 3.2. Structure theory and classification 290
 3.3. Kostant’s version of the Bott–Borel–Weil theorem 339
 Historical remarks and references for Chapter 3 360

Chapter 4. A panorama of examples 363
 4.1. Structures corresponding to $|1|-$gradings 363
 4.2. Parabolic contact structures 402
 4.3. Examples of general parabolic geometries 426
 4.4. Correspondence spaces and twistor spaces 455
 4.5. Analogs of the Fefferman construction 478

Chapter 5. Distinguished connections and curves 497
 5.1. Weyl structures and scales 498
 5.2. Characterization of Weyl structures 517
 5.3. Canonical curves 558
Appendix A. Other prolongation procedures 599
Appendix B. Tables 607
Bibliography 617
Index 623