18 1. BASICS ON LARGE DEVIATIONS we have ∞ m=0 θm m! bn m E ( Yn m 1{Y n l} ) 1/p ≤ N i=1 ∞ m=0 θm m! bn m λm/p i P{Yn ∈ Ai} 1/p ≤ N i=1 exp θbn(λi−1 + ) P{Yn ≥ λi−1} 1/p . Consequently, by (1.2.25), we get lim sup n→∞ 1 bn log ∞ m=0 θm m! bn m E ( Yn m 1{Y n l} ) 1/p ≤ θ + max 1≤i≤N θλ1/p i−1 − p−1I(λi−1) ≤ θ + sup λ0 θλ1/p − p−1I(λ) . Letting → 0+ on the right hand side, we get lim sup n→∞ 1 bn log ∞ m=0 θm m! bm n E ( Y m n 1{Y n l} ) 1/p ≤ sup λ0 θλ1/p − p−1I(λ) . By the decomposition (1.2.28), we get lim sup n→∞ 1 bn log ∞ m=0 θm m! bm n EY m n 1/p ≤ max sup λ0 θλ1/p − p−1I(λ) , lim sup n→∞ 1 bn log ∞ m=0 θm m! bm n E ( Y m n 1{Y n ≥l} ) 1/p . In view of (1.2.25), letting l → ∞ on the right hand side leads to (1.2.26). The condition (1.2.26) is called uniform exponential integrability. It can be examined through the following lemma. Lemma 1.2.10. Given θ 0, the assumption (1.2.26) holds if there is 0 such that either one of the following happens: (1.2.29) lim sup n→∞ 1 bn log E exp p(1 + )θbnYn 1/p ∞, (1.2.30) lim sup n→∞ 1 bn log ∞ m=0 (1 + )mθm m! bn m EYn m 1/p ∞. Proof. The conclusion follows from the second part of Lemma 1.2.6 and a standard application of Chebyshev inequality.
Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 2010 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.