INDEX 235
NLC(Γ,H), 212
1Γ, 68, 79, 196
O(H), 187
OS, 194
O(T, U , V ), 31
Out(E), 44
OE, 62
π

= ρ, 95, 207
π ρ, 95, 208
π ρ, 208
π ≺Z ρ, 209
π ρ, 208
πα, 139
πµ, 199
≺Z , 67
pα, 136, 139
π∆,Γ, 72
P (T), 10
P (Y ), 35
Pr(H), 199
(Q, )-invariant, 87
R, 11
Rα, 135, 139
ρ(A, B), 145
ρΓ,∆, 74
r, 167
Rep(Γ,H), 95, 207
RepO(Γ,H:1:),
80
ROUGH(E, G), 150
ROUGH(a, G), 150
ROUGH, 147
S(π), 212
σπ, 200
sΓ, 78, 91
s, 167
Sα, 139
σT
0
, 10
ˆ(n), σ 11, 36
σ∗n,
11
supp(T ), 3
supp(σ), 38
SIM(Γ), 63
SIMν (Γ), 63
SMOOTH(E, G), 150
SMOOTH(a, G), 150
SMOOTH, 147
T × T (x, y), 42
TA, 12
Tσ, 11, 36
TC, 188
[T ], 17
˜, τ 126
, 189
⊗, 189, 218
τ(dX,µ,G), 125
τX,µ,G, 126
TπT
−1,
207
TaT
−1,
61
t(G), 26
τN[E], 41
u, 3
U(H), 8, 207
U(L2(X, µ)), 2
UT
×T
, 42
UT
0
, 2
UT , 2
w, 1
WMIX(Γ,H), 217
WMIX(Γ,X,µ), 62
WMIX, 10
X0(G), 156
Xα, 135, 139
x y, 65, 145
x y, 65, 145
χA, 3
(X, µ), 1
Z1(E,
G), 131
Z1(ϕ),
224
Z1(a,
G), 129
admits non-0 almost invariant vectors,
68
admits non-trivial almost invariant sets,
67
affine automorphism, 223
aperiodic, 5
aperiodic equivalence relation, 13
associated cocycle, 136
automorphic part, 223
Bochner’s Theorem, 199
Borel bireducible, 35
Borel homomorphism, 138
Borel reduced, 35, 171
boson Fock space, 190
centralizer, 103, 168
characteristic function, 3
classified by countable structures, 35
co-induced action, 72
coboundary, 130, 224
cocycle, 69, 129, 131, 224
cocycle identity, 129, 131
cocycle superrigid, 161, 162
cohomologous, 224
cohomologous cocycles, 130, 132
cohomology class, 130, 132
Previous Page Next Page