Contents

Preface vii

Chapter 1. Introduction 1

Chapter 2. The Abstract Framework 7
 2.1. Standard estimation framework 7
 2.2. Linear rules that are exact on a subspace 16
 2.3. Strong optimality: inner product spaces 21
 2.4. Varying the observation 26

Chapter 3. Norm and Kernel of the Remainder Functional 29
 3.1. Norm of an estimation rule 29
 3.2. The interpolation theorem 33
 3.3. Quadrature formulas and one-sided approximation 36
 3.4. Krein’s theory 40

Chapter 4. Co-observations 47
 4.1. Survey 47
 4.2. The Peano kernel theorem 50
 4.3. Bounded derivatives as co-observation 59
 4.4. Bounded variation as co-observation 63
 4.5. Error bounds using the modulus of continuity 66
 4.6. Derivatives of bounded variation 72
 4.7. Sard’s co-observation 73
 4.8. Co-observations of Davis type 76
 4.9. Bounds in the complex plane as co-observations 82
 4.10. Convex functions 93

Chapter 5. Quadrature Rules of Interpolatory Type 99
 5.1. Recapitulation 99
 5.2. The Newton–Cotes method 104
 5.3. A theorem of Sloan and Smith 110
 5.4. Error bounds for the Clenshaw–Curtis method 114
 5.5. Relatives of the Clenshaw–Curtis method 121
 5.6. The distribution of nodes 130
 5.7. Bounds for the norms of Peano kernels of interpolatory rules 135
 5.8. Asymptotic behaviour of a class of Peano kernels 144

Chapter 6. Gaussian Quadrature 149
 6.1. Rules of high degree and orthogonal polynomials 149
 6.2. Coefficients and nodes for general weights 156
6.3. Nodes and coefficients for $w = 1$ 162
6.4. Peano kernels for general weights 166
6.5. Peano kernels for $w = 1$ 173
6.6. Error bounds 180
6.7. Asymptotics of the error 189
6.8. Extremal properties of Gaussian rules 195
6.9. Why Gaussian quadrature? 197
6.10. The Kronrod method 201
6.11. Kronrod rules for $w = 1$ 204

Chapter 7. Quadrature Rules with Equidistant Nodes 211
7.1. The trapezoidal method and the Euler–Maclaurin formula 211
7.2. More on the trapezoidal method 217
7.3. Simpson’s method 230
7.4. The Filon method 233
7.5. Gregory methods 236
7.6. Romberg methods 244
7.7. Equidistant nodes and the degree of polynomial exactness 254
7.8. The midpoint method 256

Chapter 8. Periodic Integrands 261
8.1. The special role of the trapezoidal rule for $w = 1$ 261
8.2. Error bounds for the trapezoidal rule 264
8.3. Trigonometric interpolation 271
8.4. Universality 273
8.5. Standard rules for Fourier coefficients 276
8.6. Other rules for Fourier coefficients 283

Chapter 9. Variance and Chebyshev-type Rules 291
9.1. Fundamentals 291
9.2. Chebyshev methods 296
9.3. The special case of $w = 1$ 299
9.4. Variance 303

Chapter 10. Problems 307

Appendix A. Orthogonal Polynomials 315
Appendix B. Bernoulli Polynomials 325
Appendix C. Validation of Co-observations 329
C.1. Automatic generation of Taylor coefficients 329
C.2. Real interval arithmetic 331
C.3. Complex interval arithmetic 333

Bibliography
Books on quadrature 335
References 336

Symbols 357

Index 361