Contents

Introduction

1

Part 1. Elliptic Equations and Systems

Chapter 1. Prerequisites on Operators Acting into Finite Dimensional Spaces

1.1. Introduction 9

1.2. Linear bounded operators defined on spaces of continuous vector-valued functions and acting into \mathbb{R}^m or \mathbb{C}^m 10

1.3. Linear bounded operators defined on Lebesgue spaces of vector-valued functions and acting into \mathbb{R}^m or \mathbb{C}^m 17

1.4. Comments to Chapter 1 20

Chapter 2. Maximum Modulus Principle for Second Order Strongly Elliptic Systems

2.1. Introduction 21

2.2. Systems with constant coefficients without lower order terms 23

2.3. General second order strongly elliptic systems 33

2.4. Comments to Chapter 2 52

Chapter 3. Sharp Constants in the Miranda-Agmon Inequalities for Solutions of Certain Systems of Mathematical Physics

3.1. Introduction 55

3.2. Best constants in the Miranda-Agmon inequalities for solutions of strongly elliptic systems in a half-space 58

3.3. The Lamé and Stokes systems in a half-space 64

3.4. Planar deformed state 69

3.5. The system of quasistatic viscoelasticity 71

3.6. Comments to Chapter 3 75

Chapter 4. Sharp Pointwise Estimates for Solutions of Elliptic Systems with Boundary Data from L^p

4.1. Introduction 77

4.2. Best constants in pointwise estimates for solutions of strongly elliptic systems with boundary data from L^p 79

4.3. The Stokes system in a half-space 83

4.4. The Stokes system in a ball 85

4.5. The Lamé system in a half-space 87

4.6. The Lamé system in a ball 91

4.7. Comments to Chapter 4 92
Chapter 5. **Sharp Constant in the Miranda-Agmon Type Inequality for Derivatives of Solutions to Higher Order Elliptic Equations**

5.1. Introduction 93
5.2. Weak form of the Miranda-Agmon inequality with the sharp constant 94
5.3. Sharp constants for biharmonic functions 98
5.4. Comments to Chapter 5 104

Chapter 6. **Sharp Pointwise Estimates for Directional Derivatives and Khavinson’s Type Extremal Problems for Harmonic Functions**

6.1. Introduction 105
6.2. Khavinson’s type extremal problem for bounded or semibounded harmonic functions in a ball and a half-space 110
6.3. Sharp estimates for directional derivatives and Khavinson’s type extremal problem in a half-space with boundary data from L^p 117
6.4. Sharp estimates for directional derivatives and Khavinson’s type extremal problem in a ball with boundary data from L^p 131
6.5. Sharp estimates for the gradient of a solution of the Neumann problem in a half-space 145
6.6. Comments to Chapter 6 148

Chapter 7. **The Norm and the Essential Norm for Double Layer Vector-Valued Potentials**

7.1. Introduction 151
7.2. Definition and certain properties of a solid angle 154
7.3. Matrix-valued integral operators of the double layer potential type 161
7.4. Boundary integral operators of elasticity and hydrodynamics 173
7.5. Comments to Chapter 7 197

Part 2. **Parabolic Systems**

Chapter 8. **Maximum Modulus Principle for Parabolic Systems**

8.1. Introduction 203
8.2. The Cauchy problem for systems of order 2ℓ 205
8.3. Second order systems 217
8.4. The parabolic Lamé system 230
8.5. Comments to Chapter 8 235

Chapter 9. **Maximum Modulus Principle for Parabolic Systems with Zero Boundary Data**

9.1. Introduction 237
9.2. The case of real coefficients 238
9.3. The case of complex coefficients 246
9.4. Comments to Chapter 9 249

Chapter 10. **Maximum Norm Principle for Parabolic Systems without Lower Order Terms**

10.1. Introduction 251
10.2. Some notation 255
10.3. Representation of the constant $K(\mathbb{R}^n, T)$ 256
10.4. Necessary condition for validity of the maximum norm principle for the system $\partial u/\partial t - A_0(x, t, D_x)u = 0$ 259
10.5. Sufficient condition for validity of the maximum norm principle for the system $\partial u/\partial t - A_0(x, t, D_x)u = 0$ 262
10.6. Necessary and sufficient condition for validity of the maximum norm principle for the system $\partial u/\partial t - A_0(x, D_x)u = 0$ 264
10.7. Certain particular cases and examples 269
10.8. Comments to Chapter 10 275

Chapter 11. Maximum Norm Principle with Respect to Smooth Norms for Parabolic Systems 277
11.1. Introduction 277
11.2. Representation for the constant $K(\mathbb{R}^n, T)$ 280
11.3. Necessary condition for validity of the maximum norm principle for the system $\partial u/\partial t - A(x, t, D_x)u = 0$ 284
11.4. Sufficient condition for validity of the maximum norm principle for the system $\partial u/\partial t - A(x, t, D_x)u = 0$ with scalar principal part 288
11.5. Criteria for validity of the maximum norm principle for the system $\partial u/\partial t - A(x, D_x)u = 0$. Certain particular cases 291
11.6. Example: criterion for validity of the maximum p-norm principle, $2 < p < \infty$ 294
11.7. Comments to Chapter 11 296

Bibliography 297
List of Symbols 307
Index 313